
Cryptanalysis of Luffa v2 Components?

Dmitry Khovratovich1, Maŕıa Naya-Plasencia2, Andrea Röck3, and
Martin Schläffer4

1 University of Luxembourg, Luxembourg
2 FHNW, Windisch, Switzerland

3 Aalto University School of Science and Technology, Finland
4 IAIK, Graz University of Technology, Austria

Abstract. We develop a number of techniques for the cryptanalysis of
the SHA-3 candidate Luffa, and apply them to various Luffa compo-
nents. These techniques include a new variant of the rebound approach
taking into account the specifics of Luffa. The main improvements in-
clude the construction of good truncated differential paths, the search for
differences using multiple inbound phases and a fast final solution search
via linear systems. Using these techniques, we are able to construct non-
trivial semi-free-start collisions for 7 (out of 8 rounds) of Luffa-256 with
a complexity of 2104 in time and 2102 in memory. This is the first analysis
of a Luffa component other that the permutation of Luffa v1. Addition-
ally, we provide new and more efficient distinguishers also for the full
permutation of Luffa v2. For this permutation distinguisher, we use a
new model which applies first a short test on all samples and then a
longer test on a smaller subset of the inputs. We demonstrate that a set
of right pairs for the given differential path can be found significantly
faster than for a random permutation.
Keywords: hash functions, SHA-3 competition, Luffa, cryptanalysis,
rebound attack, semi-free-start collision, distinguisher

1 Introduction

The hash function Luffa [5] is a Round 2 candidate of the NIST SHA-3 competi-
tion, and follows the wide-pipe design using a sponge-based mode of operation.
Luffa shows its originality in the design of the compression function, which is
based on the parallel call of 3, 4, or 5 permutations (depending on the output
size). A similar design approach was used in the hash function LANE [8], but
with different input and output transformations.
? The work described in this paper has been supported in part by the European

Commission through the ICT program under contract ICT-2007-216676 ECRYPT II,
by the French Agence Nationale de la Recherche under Contract ANR-06-SETI-013-
RAPIDE, by the PRP ”Security & Trust” grant of the University of Luxembourg, by
the Academy of Finland under project 122736, and during the tenure of an ERCIM
Alain Bensoussan Fellowship Programme.



In this paper we present several results on various components of Luffa. First,
we analyze the Luffa mode of operation and derive sufficient conditions for a dif-
ferential path with low-weight input and output differences in the permutations.
Then we proceed with the analysis of the Luffa permutations and construct a
7-round truncated differential path with using a meet-in-the-middle approach.
We are able to exploit the rotational symmetry of Luffa to increase the number
of differential paths and construct solutions for these paths with an advanced
rebound attack [10].

Since the number of active S-boxes in the differential path is too large for
a straightforward application of the rebound attack, we need to solve this issue
with several refinements of the attack. We use multiple inbound phases and a
parallel matching technique to find all possible differential paths for the trun-
cated path first. We need a parallel matching technique to match large lists of
differences through the S-box layer in the inbound phase. A gradual matching
as in the attacks on AES is not possible for the not block-wise operating linear
transformation of Luffa.

Using this advanced rebound attack we get a semi-free-start collision for 7
(out of 8) rounds of Luffa-256 v2 in Section 3, which can be extended to an
8-round semi-free-start distinguisher (see Section 4). We have also defined a new
type of distinguisher which can be used to distinguish the full permutation of
Luffa v2 in Section 5.

Note that the supporting document of Luffa provides a semi-free-start col-
lision for Luffa-512 with complexity 2204 due to the properties of the message
injection and using the generalized birthday problem [11]. For Luffa-256 this
attack does not have a complexity lower than the birthday bound. Other pre-
vious results include the existence of a non-trivial differential path for 8 rounds
of the internal permutation with probability 2−224, and different variations of
high-order differential distinguishers [1,4].

Table 1. Results. Note that the meaning and setting of “distinguisher” varies
depending on the attack.

building security time memory technique
block parameter

Distinguishers

permutation v1 full (8) 2224 - differential [7]
compression v1 6 284 - higher order diff. [4]
compression v1 7 2216 - higher order diff. [4]
permutation v1 full (8) 282 - algebraic zero-sum [1]

permutation v2 full (8) 2116 - two-tier differential Sect. 5
compression Luffa-256 v2 full (8) 2104 2102 advanced rebound attack Sect. 4

Semi-free-start collision

compression Luffa-256 v2 7 2104 2102 advanced rebound attack Sect. 3



2 Description of Luffa

In this section we briefly describe the SHA-3 candidate Luffa [5]. For a more
detailed description we refer to the submission document.

2.1 The Iteration

The hash function Luffa is a variant of a sponge function and consists of a linear
message injection MI, w 256-bit permutations Qj and a finalization function C ′′.
The chaining value at instant i is represented by (H(i)

0 , . . . ,H
(i)
w−1). The size of

each message block M (i), each value H(i)
j and starting variable Vj is 256 bits. In

the iteration of the hash function Luffa, a padded t-block message M is hashed
as follows:

(H(0)
0 , . . . ,H

(0)
w−1) = (V0, . . . , Vw−1)

(X0, . . . , Xw−1) = MI(H(i−1)
0 , . . . ,H

(i−1)
w−1 ,M

(i)) for 1 ≤ i ≤ t

(H(i)
0 , . . . ,H

(i)
w−1) = (Q0(X0), . . . , Qw−1(Xw−1)) for 1 ≤ i ≤ t

hash = C ′′(H(t)
0 , . . . ,H

(t)
w−1).

The parameter w depends on the hash output size and is specified to be w = 3
for Luffa-224 and Luffa-256, w = 4 for Luffa-384, and w = 5 for Luffa-512. Fig. 1
shows the iteration of the hash function Luffa-256 with w = 3. In the following,
we describe the permutations Qj and the message injection MI of Luffa in more
detail.

M1

MI

Q2

Q1

Q0

V2

V1

V0

M2

MI

Q2

Q1

Q0

M3

MI

Mt

MI

Q2

Q1

Q0

C′′
hash

C′

Fig. 1. The iteration of the hash function Luffa-256 (w = 3) with message
injection MI, permutations Qj and finalization function C ′′.

2.2 The Permutations

The non-linear 256-bit permutations Qj update a state of 8 32-bit words
a0, a1, . . . , a7. Initially, an InputTweak is applied to the input of the permutations.



Furthermore, each permutation consists of 3 round transformations SubCrumb,
MixWord, and AddConstant which are repeated for 8 rounds. The permutations
Qj differ only in the InputTweak and AddConstant transformation. In the follow-
ing, we give a detailed description of the round transformations. We organize the
state in 4×2 32-bit words with the LSB of each word at the right hand side (see
Fig. 2). Furthermore, we call the 4 words a0, a1, a2, a3 left words (or left side)
and the 4 words a4, a5, a6, a7 right words (or right side), and we call each 4-bit
column of this state a nibble. In the following, we describe a specific difference
in a nibble either by its bit pattern, e.g. 1011 (with the LSB on the right), or by
its hexadecimal value, e.g. 0xB, depending on which is more convenient for the
understanding.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
a0 a4
a1 a5
a2 a6
a3 a7

Fig. 2. The 256-bit state of each Luffa permutation Qi is organized in 8 32-bit
words. In this representation, SubCrumb is applied vertically to 4-bit columns
(nibbles) and MixWord horizontally to 64-bit rows of the state.

In permutation Qj , the InputTweak rotates the 4 right words a4, a5, a6, a7 to
the left by j positions. This tweak has no influence on the four left words. In
the non-linear SubCrumb layer, the same 4-bit S-box is applied to each nibble of
the state. Hence, 64 independent S-boxes are applied to the columns of the state
(see Fig. 2). Note that the wiring is different for the left and right side, which is
equivalent to applying two different S-boxes S and S′ on each side.

In MixWord, a linear mixing function is applied to two 32-bit words (ak and
ak+4 for k = 0, . . . , 3) of the state. Hence, 4 independent linear functions are
applied to each row of the state (see Fig. 2). We give here an alternative descrip-
tion of MixWord which is more suitable for our analysis. A detailed description
of MixWord can be found in the specification of Luffa [6]. We denote by ai

k and
ai

k+4 the i-th bit of the words ak and ak+4 with k = 0, . . . , 3. Then, the output
words bik and bik+4 are computed as follows:

bik = ai
k ⊕ ai+18

k ⊕ ai+20
k ⊕ ai+22

k ⊕ ai+30
k ⊕ ai

k+4 ⊕ ai+18
k+4 ⊕ a

i+22
k+4

bik+4 = ai+17
k ⊕ ai+29

k ⊕ ai+31
k ⊕ ai+17

k+4 ⊕ a
i+31
k+4 ,

with 0 ≤ i ≤ 31, k = 0, . . . , 3 and all indices modulo 32.
Note that each bit of the left output words bik depends on 8 bits of the input

and each bit of the right output words bik+4 depends on 5 bits of the input.
For the backward direction the opposite holds: Each bit of the left input words
ai

k depends on 5 bits of the output and each bit of the right input words ai
k+4

depends on 8 bits of the output. In addition, we show in Fig. 3 the propagation of
a 1-bit difference in forward and backward direction. Let us consider for example
the case k = 0 in the figure. We have a difference in all the bits of b0 and b4



31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1
1 1 1 1 1 1 1 1

MixWord
1 1 1 1 1 1 1
1 1 1 1 1

1

Fig. 3. Propagation of a single bit at the LSB of the left (k = 0) and right
(k = 1) word in forward, and left (k = 2) and right (k = 3) word in backward
direction. Empty bits are zero. Note that the 64-bit rows are independent in
each MixWord transformation.

which depend on a0
0, e.g.

b00 = a0
0 ⊕ a18

0 ⊕ a20
0 ⊕ a22

0 ⊕ a30
0 ⊕ ai

4 ⊕ a18
4 ⊕ a22

4 .

2.3 The Message Injection

The message injection in Luffa-256 can be described by an operation in a ring
of polynomials:

R = Z2[x]/(x8 + x4 + x3 + x+ 1),

which is applied to those 8 bits of the state with equal bit position i in the
32-bit words ai

k for k = 0, . . . , 7. Hence, each bit of the message is mixed into
two nibbles of the state. In the message injection, the chaining values Hj and
the message block M are used to get the new intermediate chaining values Xi

as follows: X0

X1

X2

 =

x+ 1 x x 1
x x+ 1 x x
x x x+ 1 x2

 ·

H0

H1

H2

M

 .

3 Semi-free-start Collision on Luffa-256 for 7 Rounds

In this section, we present a rebound technique to search for semi-free-start colli-
sions in Luffa. With semi-free-start collision, we denote a collision on the internal
state with no differences in the chaining value. Contrary to free-start collisions
(with arbitrary differences in the chaining value), semi-free-start collisions are
not trivial to find in sponge-like constructions. In our attack, we can find two
distinct two-block messages M1,M2 and M∗1 ,M

∗
2 such that

MI(M2, P (MI(M1, CV ))) = MI(M∗2 , P (MI(M∗1 , CV ))).

for some chaining value CV . In the following, we show that the complexity to
find such a semi-free-start collision for 7 (out of 8) rounds of Luffa-256 is about
2104 in time and 2102 in memory.



3.1 Outline of the Attack

To search for semi-free-start collisions in reduced Luffa-256 we use an adapted
and refined rebound attack. Since we do not allow differences in the chaining
values, all 3 permutations need to be active. In the attack, we first search for
truncated differential paths in Qj which result in a semi-free-start collision for 7
rounds. Contrary to AES based designs, this step is already a non-trivial task. In
the truncated differential path, we only consider active and non-active S-boxes
(or nibbles) of the state. Hence, we will represent the truncated differential path
using a line of 2x32 nibbles. We construct a path which has only one active S-
boxes at the input and the end of the path. Furthermore, we also try to keep the
number of active S-boxes in the middle rounds low. We use an improved rebound
attack where we first filter for all possible differential paths and then solve for the
values of the state to get corresponding input pairs for all three permutations.
While filtering for differential paths, we also need to ensure that the input and
output differences can be injected and erased by the message difference.

3.2 Matching the Message Injection

In the message injection, a difference in nibble i of M might affect two nibbles
of the input of each permutations Qj . Due to the InputTweak, these two nibbles
are, at the left side the nibble at position i, and on the right side the nibble at
position i + j. To get a sparse truncated differential path we aim for only one
active S-box (one active nibble) in the first and the last round.

In the first message injection, the difference in all chaining values Hj is zero.
Therefore, we get for the intermediate chaining variables Xj :

∆X0

∆X1

∆X2

 =

x+ 1 x x 1
x x+ 1 x x
x x x+ 1 x2

 ·


0
0
0

∆M

 =

 ∆M
x ·∆M
x2 ·∆M


In order to have only one active S-box at the input of each permutation, we
require that ∆M,x · ∆M,x2 · ∆M are polynomials either of degree < 4 or
divisible by x4. The most simple conditions which do not spread to the other
nibble are

∆M = ax+ b or ∆M = ax5 + bx4.

The first solution corresponds to a difference in a nibble on the left side and the
second solution to a difference on the right side. The possible differences in these
nibbles are 0001, 0010 or 0011.

In the second message injection, we need to erase all differences of the internal
state. Hence, we get the following system of equations:0

0
0

 =

x+ 1 x x 1
x x+ 1 x x
x x x+ 1 x2

 ·

∆H0

∆H1

∆H2

∆M





Again, we consider only differences with only one active S-box, prior to the
last (linear) MixWord transformation. This condition filters out most possible
differences (we omit long calculations), and the only non-trivial solutions we
have found are

∆H0

∆H1

∆H2

∆M

 =



x3 + x2 + 1

x3

x
x+ 1

 ,


x7 + x6 + x4

x7

x5

x5 + x4


 .

The first solution corresponds to a difference in the left side and the second one
to a difference in the right side. Thus, for each permutation we have one specific
output difference for the single active S-box in the last round, for which we are
sure that we can erase it by a difference in the message. Note that the output
difference of the permutation is the same in each active nibble. The specific
differences in the nibbles of H0, H1, H2, and M are 1101, 1000, 0010, and 0011,
respectively.

To summarize, we search for differential paths with only a single active S-box
in the first and the last round. For an active S-box in a right nibble at position i
of Q0, only the two least significant bits of the input difference should be active.
The possible differences are then 0001, 0010 or 0011. For permutation Qj , the
active S-box will be at position i + j modulo 32 on the right side, due to the
InputTweak and should have the same difference as in Q0 but rotated j positions
to the MSB. We get the differences 0010, 0100 or 0110 for Q1, and 0100, 1000
or 1100 for Q2. Note that we fix the output difference of the active S-box to
only one possible difference depending on the permutation. The difference at the
output of the single active S-box in round 7 has to be 1101 for Q0, 1000 for Q1

and 0010 for Q2. Note that for these input and output differences of the three
permutations, the differences of the injected message block have been computed
deterministically.

3.3 Constructing Truncated Differential Paths

For the semi-free-start collision on 7 rounds of Luffa-256, we use many truncated
differential paths for each permutation to get enough solutions for an attack. All
paths have the same numbers of active S-boxes in each round which are given
as follows:

1− 5− 27− 52− 26− 5− 1

We have one active S-box after the SubCrumb of round 7, and we have already
determined which difference we must have in it’s output for each lane. This one
active nibble leads to differences in 8 nibbles after the MixWord. The differences
will be the same in each nibble and can be eliminated by the method described
in Section 3.2. In the following analysis we will omit this last step, since it has
no influence on the differential path.



To get a truncated differential path with only 5 active S-boxes in the second
and second last round, the single active S-box at the input has to be in the right
side and the single active S-box at the output in the left side. Note that the
position of the single active S-box in round 7 is identical in all permutations.
However, the position of the active S-box in round 1 is rotated by j positions
for permutation Qj due to the InputTweak. However, for each permutation, we
are able to find an equivalent truncated differential path with the same number
of active S-boxes (see Appendix A). Therefore, in the following we only consider
the path of the first permutation Q0.

We have constructed the truncated differential path for Q0 by first propa-
gating forward and backward without constraints from a single active S-box in
round 1 and round 7 (see Fig. 4). For each single active S-box, we have tried
all 32 positions to get a good (sparse) truncated differential path for our attack.
We have found a path with the following number of active nibbles after each
SubCrumb and MixWord transformation in forward direction:

1− SC− 1−MW − 5− SC− 5−MW − 27− SC− 27−MW − 58

and in backward direction:

57−MW − 26− SC− 26−MW − 5− SC− 5−MW − 1− SC− 1

Since the 57 and 58 active nibbles have only 52 common active nibbles,
we simply impose some constraints on the connecting MixWord transformation.
This results in a (58 − 52) × 4 = 24 bit condition for the forward part, and a
(57 − 52) × 4 = 20 bit condition for the backward part. These conditions are
marked by red nibbles in Fig. 4 and are required to be zero. In this truncated
differential path, the active S-box at the input is located in the right word in
bit 0, and at the output in the left word in bit 14. Furthermore, in the Luffa
permutations all XOR differential paths are rotation symmetric within 32-bit
words. Hence, we actually get 32 truncated differential paths with active input
the ith nibble of the right part and active output the nibble i + 14 modulo 32
of the left part for Q0. In general, for Qj we get for an active input at nibble
i + j of the right part, the same active output at nibble i + 14 of the left part
(see Appendix A) due to the InputTweak.

3.4 Rebound Attack on Luffa

To find pairs conforming to the given truncated differential paths, we use the
rebound attack [10]. Due to the different structure of Luffa compared to AES
based hash functions, several improvements are needed. Since the truncated
differential path consists of three rather active states in the middle a standard
inbound phase cannot be used. Previous rebound attacks dealt with relatively
short inbound phases to exploit the propagation of differences with probability
one. Since this is not possible for longer inbound phases, a different strategy is
needed to reduce the overall computational complexity of the attack.



Fig. 4. An example for a truncated differential path followed in the first permu-
tation for building the semi-free-start collisions. The difference in A can be one
of 0001, 0010 or 0011, the difference in B has to be 1101 (see Section 3.2).

The main idea is to first generate all possible differential paths which con-
form to the truncated paths. Note that we do not compute values or generate
conditions in this step. We use 5 short inbound phases to filter for differential
paths from both sides with a final filtering step in the middle (see Fig. 5). In each
inbound phase, we first compute all possible differential paths independently and
merge the results of two adjacent inbound phases. We have carefully estimated
the number of possible differential paths. In each step, this number is signifi-
cantly lower than 2128. Note that we apply the inbound phase at every S-box
layer and also need to merge the resulting solutions through the S-box layer. This
is not trivial for very large lists and explained in detail in Section 3.6. Also note
that in AES-based primitives, differences between input and output of S-boxes
can be filtered gradually due to the column-wise operation of MixColumns. Since
this is not the case for the MixWord transformation of Luffa, more complicated
filtering steps are needed.

After determining all possible differential paths, the next step is to solve
for conforming input pairs to the permutation. We start by computing values
of SubCrumb in the middle rounds 2, 3, and 4 simultaneously using a linear
approach, similar as in the linearized match-in-the-middle step of [9]. Also this
step has to be adapted since some S-boxes are not active and therefore, do not
behave linearly. For each solution of these three rounds, all values of the state
are determined and we probabilistically compute the resulting pairs outwards in
the outbound phase. Finally, those pairs which match the message injection will
give a semi-free-start collision for Luffa-256.

3.5 The Inbound Phases

In this section, we filter the truncated path for all possible differential paths.
In total, about 268.7 differential paths are possible, given the constraints on the
message injection. We determine these paths by applying 5 inbound phases in the
5 middle rounds. In these inbound phases, we only determine which differences
are possible but do not choose actual values for the state. Note that each active
S-box can have one out of 15 ∼ 23.9 differences at the input or at the output.
However, only 96 out of these 15 · 15 differences are possible for the Luffa S-box
(see the differential distribution table of this S-box). Hence, the probability of



SC MW
round 0

SC MW
round 1

SC MW
round 2

SC MW
round 3

SC MW
round 4

SC MW
round 5

SC MW
round 6

1 5 27 52 26 5 1

5x inbound
linear solvingoutbound outbound

Fig. 5. A schematic view of the advanced rebound attack on Luffa. The attack
consists of 5 small inbound phases to determine possible differential paths, a
linear solving step to find the values and two outbound phases.

a differential match is about 96/225 ∼ 2−1.23. Contrary to the AES S-box, we
need to compute more exact probabilities to get correct results for Luffa.

The first inbound phase is applied to the truncated differential path 1 −
MW− 5− SC− 5−MW− 27 in round 0 and 1. We can have 15 ∼ 23.9 non-zero
differences at the input of the S-box (one active nibble in the first MixWord) and
155 ∼ 219.5 non-zero differences at the output (5 active nibbles in the second
MixWord). Since only a fraction of 2−1.23·5 = 2−6.15 differentials are possible
through the 5 active S-boxes, we get in total about

23.9 · 219.5 · 2−6.15 = 217.3

possible differential paths for the first inbound phase. To support this estimate,
we have computed the exact number of differential paths conforming to this
truncated path, which is 217.49.

Next, we continue with a second inbound phase between rounds 0-2. In the
forward direction, we take all solutions of the previous inbound phase and in
backward direction, we determine all possible differences in 27−MW− 52. Note
that in general, 27 active nibbles would expand to 58 active nibbles through
MixWord. Therefore, we get a 24-bit condition on these differences and consider
only the valid 23.9·27−24 = 281.5 differences in round 3. These differences match
with the previously computed ones through the 27 active S-boxes with a prob-
ability of 2−1.23·27 = 2−33.2. In total, we get

217.3 · 281.5 · 2−33.2 = 265.6

possible differential paths for the truncated differential path 1−MW− 5−SC−
5−MW − 27− SC− 27−MW − 52.

Now, we repeat the same procedure in backward direction for the second
half of the path. The third inbound phase deals with rounds 4-5 and the path
26 − MW − 5 − SC − 5 − MW − 1. Similarly to the first inbound phase, we
get 219.5 differences for MixWord in round 4 and 23.9 in round 5, which results
in 217.3 differential paths for this inbound phase. We continue with the fourth
inbound phase and combine these paths with all possible differences in round



3 for 52 − MW − 26. To get 52 active nibbles instead of 57, we need a 20-bit
conditions and get 23.9·26−20 = 281.6 differences. We match all differences in
backward and forward direction at the 26 active S-boxes and get

217.3 · 281.6 · 2−31.9 = 267

possible differential paths for the truncated differential path 52 − MW − 26 −
SC− 26−MW − 5− SC− 5−MW − 1.

3.6 The Final Inbound Phase: Parallel Matching

Next, we need to match all 265.6 paths of the first three rounds with the 267

paths of the last three rounds at the middle S-box layer. Since we have 52
active S-boxes, only 265.6+67−1.23·52 = 268.8 differential paths will survive. How-
ever, the complexity of a straight forward filtering step is 265.6 · 267 = 2132.6,
which exceeds the birthday bound for collisions in Luffa-256. Therefore, we use
a parallel matching technique to independently match differences in sets of 13
S-boxes. This reduces the complexity of the final inbound phase to about 2102

table lookups.
We first generate two sorted lists A and B from the differential paths found

in the previous two inbound phases: List A contains all 265.6 paths of round 0-2,
sorted by the 52 non-zero input differences {x1, . . . , x52} of the active S-boxes
in round 3. Similarly, list B contains all 267 paths of round 3-5, sorted by the 52
non-zero output differences {y1, . . . , y52} of the same S-boxes. Next, we separate
these 52 S-boxes into sets of 13 S-boxes which we match independently. Note that
for each set of 13 S-boxes only 1513 = 250.8 non-zero input or output differences
exist. It follows that we can associate 265.6−50.8 = 214.8 elements from list A or
267−50.8 = 216.2 elements from list B to each of these 250.8 differences.

Using the two lists A and B, we generate two new and sorted lists C and
D with differential matches for the first 13 and second 13 active S-boxes. List
C contains differential matches between {x1, . . . , x13} and {y0, . . . , y13}, and list
D between {x14, . . . , x26} and {y14, . . . , y26}. The resulting size of each list is
250.8+50.8−13·1.23 = 285.6. The complexity to match two times 250.8 differences at
13 S-boxes is about 2102 table lookups.

Next, we associate the differences {x14, . . . , x52} of A to C, and the differences
{y1, . . . , y13, y27, . . . , y52} of B to D. The resulting list C′ contains the differences
{y1, . . . , y13, x1, . . . , x52} sorted by {y1, . . . , y13}, and list D′ contains the differ-
ences {x14, . . . , x26, y1, . . . , y52} sorted by {x14, . . . , x26, y1, . . . , y13}. The size of
the resulting new list C′ is the size of C multiplied by all elements of A which
can be associated to each of x1, . . . , x13. The same holds for D′ with elements of
B. Hence, we get 285.6+14.8 = 2100.4 entries in C′ and 285.6+16.2 = 2101.8 entries
in D′.

Finally, we merge the two lists C′ and D′ by their overlapping differences
{y1, . . . , y13, x14, . . . , x26}. Since we need to match differences in 26 active nib-
bles, we get a 101.4-bit condition. This results in about 2100.4+101.8−101.4 = 2100.8

solutions with a complexity of about 2102 simple table lookups (we do not need



to consider S-box differentials here anymore) and memory. Of these solutions,
about 2−1.23·26 = 2−32 differential paths give valid differentials also for the re-
maining 26 S-boxes. Hence, we get in total about 2100.8−32 = 268.8 differential
paths for round 0-6.

3.7 Linear Solving for Pairs

In the previous step, we have constructed all 268.8 possible differential paths for
the given truncated differential path of Section 3.3. However, to get conforming
input pairs, we still need to determine the actual values. Note that we can only
find values for a fraction of the differential paths. In the following, we show how
to determine these paths and how to construct all values with a low average
cost, by extending the linear approach published in [9].

We start by constructing solutions which satisfy the differential path in
rounds 2-4 first. Since these rounds contain most active S-boxes, they are usually
considered as the most expensive rounds. Note that each active S-box in Luffa
restricts the number of possible values to either 2 or 4 elements, which can be
described by an affine space: If there are two solutions, the input values can be
described as ax+ b, and the output values as cx+ d. In this case x is a boolean
variable common for input and output, and a, b, c, d are elements from Z4

2 . If
there are four solutions, they are defined by two binary variables and two affine
equations, one for the input and one for the output.

Hence, we can describe the set of all possible values in the active S-boxes of
the three middle rounds using about 1.23 ·(26+52+27) = 129 boolean variables.
Note that this number is slightly different for each particular path, depending on
the actual number of solutions for each S-box. These variables are linked by the
equations of the linear MixWord transformation and the (affine) AddConstant in
round 3 and 4. In total, we get at least (26 + 27) · 4 = 212 equations which link
the active S-boxes of the three middle rounds.

Unfortunately, these equations involve 12 inactive S-boxes in round 3, whose
input and output values can not be described by affine spaces with common
boolean variables. However, the input and output values can be described by
a linear space separately. Note that there is also one inactive S-boxes which
does not influence the active S-boxes of round 4. Thus, only those 4 variables
describing its input are involved in the linear system. For the remaining 11
inactive S-boxes we get 11 · 8 = 88 additional variables. In total, we have to
match the result over 11 S-boxes and get 212 equations in 129 + 4 + 88 = 221
variables.

To summarize, we expect to get 29 solutions for each differential path with
a complexity of 223 simple bit operations. Most of these solutions are actually
filtered out by the 44-bit filter of the 11 inactive S-boxes. In total, we therefore
get 268.8+9−44 = 233.8 solutions for the three middle rounds. The complexity
of this step does not exceed 280 simple bit operations. Next, we compute these
solutions forwards and backwards and check whether they also conform to the
remaining differential path in the outbound phase.



3.8 The Outbound Phase

In the outbound phase, we simply propagate the solutions of the three middle
rounds outwards and check whether the remaining path and the conditions on the
message injection (see Section 3.2) are fulfilled. The probability that a solution
of the previous step also fulfills the differential of the 5 active S-boxes in round 1
and 6 is 2−(4−1.23)·10 = 2−27.7. Therefore, we get in total about 233.8 ·2−27.7 ∼ 26

pairs for the whole 7-round truncated differential path:

1−MW − 5− SC− 5−MW − 27− SC− 27−MW − 52− SC−
52−MW − 26− SC− 26−MW − 5− SC− 5−MW − 1.

To satisfy the required differences at the input, we need to get one out of three
2-bit difference at the input of the single active S-box in round 0. At the output
of the single active S-box in round 7 we need to match one specific difference.
Hence, the conditions at both input and output are satisfied with a probability
of 3

15 ·
1
15 = 2−6.2.

Next, we repeat all previous steps for each of the three permutations and
check whether we can find a message according to the input and output dif-
ferences of the permutations. Note that the input difference of one permutation
can be corrected by choosing an appropriate message differences. Hence, we only
need to ensure that the input differences in two permutations match. The prob-
ability that these three 2-bit differences match is 1

32 = 2−3.2. Hence, the prob-
ability to get the right input and output differences in all three permutations
is 23·(6−6.2)−3.2 = 2−3.8, which is actually not enough to get a semi-free-start
collision for Luffa-256.

However, as already noted in Section 3.3, we can rotate the differential path
32 times. Since the values cannot be rotated due to the addition of the round
constant we need to repeat the search for conforming pairs from Section 3.7, but
not the expensive part of finding the differences that verify the path. To get a
semi-free-start collision for Luffa-256, we have to repeat this about 23.8 = 14
times. To summarize, the most expensive part of the attack is the computation
of all possible differential paths in the final inbound phase for each of the three
permutations. Hence, the complexity to find a semi-free-start collision for Luffa-
256, or equivalently a collision on the internal state of 768 bits, is about 2104 in
time and 2102 memory.

4 Building an 8-Round Distinguisher from the 7-Round
Semi-free-start Collision

If we consider the previous explained procedure for building the semi-free-start
collision on 7 rounds, and we look at the differential path, it is easy to see
that one round later, so after the eighth rounds, if the path is followed, only 8
nibbles will be active before the last MixWord and all the other ones inactive. By
considering not the bits but the linear combination of bits, we get the same result
after the last MixWord. We can then build a distinguisher on the compression



function for 8 rounds, with the same complexity as before, where we will find
(64 − 8) × 3 combination of nibbles in the output without any difference, what
means a collision on 672 bits with a complexity of about 2104, which is much lower
than the birthday paradox. If we would try to build such a collision exploiting
a generic attack on the general mode, we could control one permutation with
the message insertion, but this will mean colliding on 512 bits, and if we want
to have some active nibbles in all the permutations, we couldn’t do any better
than the birthday paradox on 672 bits, so our distinguisher has clearly a lower
complexity.

5 Distinguisher for 8 Rounds of the Permutation

We use a differential distinguisher which sends a certain number of queries to
a black-box B and will decide in the end if the black-box is the permutation of
Luffa or a random oracle. The innovative idea is that the distinguishing algo-
rithm works in two parts. In the first part, we apply a first test T1 to N input
quadruples, where one value is chosen randomly and the three others differ from
the first one in some nibbles in a deterministic manner. The test T1 is passed
if the quadruple fulfills a specific property P. As we will see later, to test the
property P of a quadruple we need on average 2(1 + p) queries to the black-box,
where p << 1/2 is a given probability. Thus, T1 involves 2(1+p)N ≈ 2N queries
to the black-box. Only a subset of the original quadruples will pass T1. To this
subset we will apply a second test T2 which uses several calls to the black-box
for each tested quadruple. However, since the number of quadruples we have to
test for T2 is much lower, the overall complexity is determined by the one of T1.
The probability of passing the two tests is much higher for the permutation of
Luffa than for a random oracle.

The distinguisher is based on a differential path represented in Fig. 6. As we
will see later, the path over the eight rounds is divided in four parts: one inverted
first round, three rounds of differential path, three rounds of truncated differen-
tial path, and one last round which maintains a distinguishing linear property.
Let a quadruple be defined by the four 256-bit states z = (z1, z2, z3, z4). Our goal
is to find quadruples such that the pairs (z1, z2) and (z3, z4) follow the path. Be-
cause of the first inverted round, a quadruple is constructed in the following way:
We choose the first message z1 randomly. Let LS(zi

j), RS(zi
j) denote the i’th

nibble on the left and right side of zj , respectively, which will enter the first S-box
layer. Then, for the messages zj , 2 ≤ j ≤ 4, we keep 64−kj out of the 64 nibbles
as in z1, and replace kj nibbles by fL(LS(zi

1), α) = S−1(S(LS(zi
1)) ⊕ α) and

fR(RS(zi
1), α) = S′

−1(S′(RS(zi
1)) ⊕ α), respectively. The numbers of changed

nibbles are k2 = 32, k3 = 11 and k4 = 29, where 28 nibbles are the same in
all four states. The construction of a quadruple can be easily done by either
computing fL and fR each time or by a lookup in two tables of 16× 15 entries.
We are able to perform this inversion of the first round (and not more) as it is
going to determine a big structured subset of valid input quadruples with the
previous equations, where there is no difference in 28 nibbles and all the LS(zi

1)



and RS(zi
1) can be randomly chosen. For example, if more rounds were inverted,

the validity of the distinguisher might become controversial as differences will
spread over all the input and, for not having probability involved, some of those
values should be fixed for having the wanted difference at the beginning of the
differential path. So if there was no structure on the two pairs of inputs and the
values were determined, this could be compared with just inverting the permu-
tation from four outputs with the wanted property and obtaining four concrete
inputs that have no structure at all, which for obvious reasons can not be consid-
ered a distinguisher. This is not the case when we just invert one round. In the
following, we won’t differentiate each time between the left and the right side if
the general method stays the same, instead we use directly f and zj . Because of
the best probability of the differential transitions of the S-boxes, we choose the
difference α to be either 0x2 or 0x4.

The differential path in Fig. 6 has no difference in 6 nibbles (24 bits) in round
7. The 8th round is formed by a SubCrumb and a MixWord phase. We consider
first the SubCrumb phase, and we can notice that it is not going to modify the
property of having 6 nibbles with no difference. Then the MixWord is applied.
We recall here that this phase is linear. This will mean that, from the output
after the 8th round, there are 24-bit linear relations which values collide when
the differential path is verified. This is equivalent to finding the collision on the
6 nibbles before the MixWord linear phase, so for the sake of simplicity, we will
look for collisions before the last MixWord phase.

A quadruple z fulfills the property P if and only if after apply-
ing the black-box B, we have a collision in the 24 bits of the pair
(MixWord−1(B(z1)),MixWord−1(B(z2))) and in the pair (MixWord−1(B(z3)),
MixWord−1(B(z4))). The probability of P is defined by the differential path
(Section 5.1) and the property described in Section 5.2, which shows that for
each pair following the path we can find another pair following the path with
probability one.

Test T2 will use the non-trivial property that for a quadruple fulfilling P and
thus passing T1, we can change some nibbles in the four states such that with
high probability the new quadruple will again fulfill P. This property is described
in detail in Section 5.3. Thus from the subset of quadruples that pass T1, we will
be able to find new quadruples passing P with a much lower complexity.

The distinguisher works on the permutation. However, it can be easily
adapted to the compression function by choosing the message according to the
chaining value and by considering only the output of one permutation. For a
known CV and a random message, let us consider for example the first permu-
tation. Let mi, hi be the nibbles of the message and the value determined by the
CV , which are XORed as input of the permutation. Then, for the other three
message of the corresponding to a quadruple we will change some nibbles from
mi to f(mi ⊕ hi, α)⊕ hi.

Related work. Our distinguisher is similar to some adaptive attacks on block
ciphers. In these attacks a right pair for a differential provides information on



the internal computations, which may speed up the search for the next pairs if
it is required. In the attack on RC5 [3] the second and next right pairs could be
obtained with significantly lower complexity. In the attack on AES a single right
pair provides information on several key bytes, so the attacker partially controls
the first round and gets right pairs for the next differential much faster [2].

5.1 The Differential Path

We use the differential path in Fig. 6 which consists of four parts. Note that the
last round and thus, part 4 is not represented in this figure:

1. Precomputation (round 0): We can guarantee a given difference in round 1
by choosing the blue nibbles in round 0 accordingly.

2. Differential (round 1-4): We use a difference that has probability 2−2 of
passing from the input of the S-box to the output (for S and S′), e.g. α = 0x2
or α = 0x4. This part is responsible for the final probability.

3. Considering unaffected bits (round 4-7): In the end of round 4 we have a
difference in one nibble. We consider how many nibbles in round 7 are never
“affected” by this difference.

4. Round 8: As mentioned above, the property of unaffected nibbles in round
7 can be checked by linear combination of bits after round 8. For simplicity
reasons we will omit this part for the further discussion.

For the differential path we only consider a pair of states (either (z1, z2) or
(z3, z4)) not a quadruple. We will denote by x the first state to which we will
add some difference.

In round 0, at every place where there is no difference we choose a random
nibble xi. In the other places we use the pairs (xi, f(xi, α)), where xi is chosen
randomly. Now we have guaranteed that we have the differences α after the
S-box and the corresponding differences in the beginning of round 1.

In the next part, we have three S-boxes layers with a total of 23 + 23 + 8
active S-boxes, before we arrive in round 4. This gives us a probability of 2−54×2

of following this part, as 2−2 is the probability of passing one active S-box for
the chosen α.

At the beginning of round 4 we only have a one bit difference. From rounds
4-7, we are only interested in which bits are unaffected by the difference in round
4. Thus, from the one bit difference in round 4, with probability one we have no
differences in 24 bits (6 nibbles) at the end of round 7.

5.2 Changing the Parity of Differences

We can change the parity of some differences in round 1 such that in the case of
a pair following the differential path, the new pair will also follow the differential
path with probability one. This property will be used in T1. The general concept
of changing the parity of differences is mainly the following: we consider one
nibble with a difference γ, that is a nibble taking the value y for message M1



Fig. 6. Differential path used for the distinguisher over 8 rounds.

and the value y⊕γ for message M2. If we change it’s parity, it will take the value
y ⊕ γ for message M1 and the value y for message M2. It is obvious to see that
if this nibble is the only difference between M1 and M2, this parity change will
have the effect of interchanging M1 and M2 and we will have gained nothing.
However, if there is more than one difference, changing the parity of some of
them will define two new input messages M ′1 and M ′2 with the same difference
as the original ones and the same values in the nibbles without difference.

Let us consider an example. Let xi1 , xi2 , xi3 be some nibbles in round 1.
Let the pair with the corresponding difference be xi1 ⊕ α, xi2 , xi3 ⊕ α. Then,
changing the parity of the difference in xi1 leads to the pair xi1 ⊕α, xi2 , xi3 and
xi1 , xi2 , xi3 ⊕ α. This change is equivalent to adding α at the position of xi1 in
the two states.

We are going to see how changing the parity of some well chosen differences in
a pair of states that satisfies the differential path will immediately give us another
pair of states that also verifies the path with probability one. For this, we have
to take into account the effect that changing the parity of some differences at
round r might have some rounds later:

– SubCrumb Each active S-box that follows the path verifies S(x⊕α)⊕S(x) =
α. This property still holds when we change the parity of the difference of
the nibble. This means that through any SubCrumb phase where the only
change is the parity of some differences, the path will still be verified.

– MixWord Every difference after the linear transformation that is affected by
a parity change in the previous step will also have its parity changed. Thus,
it does not introduce any problem for verifying the path in next round (we
would be in the starting case). However, when two differences cancel out and
one had it’s parity changed but not the other, the value of the corresponding
nibble (in both states) will change from x to x ⊕ α. This won’t affect the
verification of the differential path for this round, but might affect the round
(r+2): the values for the nibbles (that have no difference) obtained after the
SubCrumb of round (r + 1) will change at these positions. This might affect
the values associated to nibbles with differences after the MixWord phase of
round (r + 1). Next, after the SubCrumb phase of round (r + 2) the active
S-boxes might not output the same difference as for the original pair (as
their values are changed).



We are going to use this, once we have obtained a pair of states that verify the
differential path, to obtain another pair verifying the path with probability one.
In the differential path we want to have the parity of some differences changed
at the beginning of the first round. To achieve this, we have to add α after
the first S-box to the corresponding positions, like in Fig. 7. We have chosen
these three positions as they verify that they generate no changes of values one
round later (no differences cancel out where an odd number of parity changes
at the beginning of round 2), and this way they will only affect the S-box two
rounds later (round 4), as we explained before. As the difference that the S-box
of round 4 outputs is not important for the verification of the differential path.
When changing the parities of the three difference, the remaining differential
path from 1 to 8 will also be verified.

Fig. 7. Changing the parity of differences.

In Fig. 7, the red bordered rectangle means that we added α to the corre-
sponding nibble. To see the effect that this has in the input pair, a thick black
bordered rectangle in round 0 means that we have to change the value xi to
f(xi, α). This can happen to positions with or without a difference in the orig-
inal pair. With this, once we have found a pair of messages that verifies the
path, if we generate a new pair from it by changing the nibbles associated to
the positions of the black bordered rectangle in round 0 from the value xi to
the values f(xi, α), we will have automatically generated a new pair that also
verifies the path.

5.3 Changing Values Without a Difference

If we change in round 1 the value of the nibble at the 14th position on the right
side, this will have an effect on 4 S-boxes in round 3. The same happens when
we change the nibble at position 17 on the right side. If we change the two at
the same time, this has an effect on 7 S-boxes. This property will be used in T2.
The influenced bits are shown in Fig. 8. A red, blue and violet squares mean
that a nibble was influenced, respectively by the nibble 14, by the nibble 17 or
by the two nibbles.

We have 15 possibilities to change only position 14, 15 possibilities to change
only position 17 and 15× 15 = 225 to change the two.

Getting all possible values of the nibble in position 14 is equivalent to adding
the difference β to the nibble in round 1, for all β ∈ {0x1, . . . , 0xF}. This can
be done by changing 8 nibbles in round 0 from xi to f(xi, β), which will add β



Fig. 8. Influence of the nibbles 14 and 17.

to 8 nibbles after the first S-box layer. The position of the 8 nibbles are marked
in Fig. 8. The same can be done for position 17. If we change the two nibbles
at the same time we will have to change 8 nibbles to f(xi, β14) and 8 nibbles to
f(xi, β17).

Now for the original pair of messages we change the values of the nibbles
at position 14 and 17 (on both messages) at round 1, send the corresponding
values at round 0 to the black box and look if the result has again a collision in
the 24 bits. For i = 0, 1, let pi be the probability that when starting from a pair
following the differential path and trying out all the 15 other values at round
0 that produce all the nibble values at position 14 (or 17), we obtain exactly
i pairs with no differences in the 24 bits. Let qi be the same probability when
trying the 225 possibilities where the nibbles at position 14 and 17 are changed.
Then we have

p0 = (1− 2−8)15

p1 = 15× 2−8(1− 2−8)14

q0 = (1− 2−14)225

q1 = 225× 2−14(1− 2−14)224.

The total probability of having at least 2 new pairs out of 255 tried is

1−
(
p2
0q0 + 2p0p1q0 + p2

0q1

)
= 2−8.3.

For a pair not following the differential path, this happens with a probability
of

1− (1− 2−24)255 − 255× 2−24(1− 2−24)254 = 2−33.

5.4 Complete Distinguisher

For a random state z1 we define the quadruple z as following: The state z2 is set
such that together with z1 it forms an input pair of the differential path. The
states z3, z4 is obtained by changing the parity of difference of the pair (z1, z2).

Test T1 We try N different quadruples. For each quadruple z we first test if the
pair (z1, z2) has a collision in the 24 bits. The probability of this property is 2−24

in the general case. The probability of following the differential path is 2−108.
Only if we find a collision, we will test the pair (z3, z4). For a pair following the



path, this leads to a collision in the 24 bits with probability one, otherwise this
will happen with probability 2−24.

Thus in the case of the black-box being the permutation of Luffa we need
2N+2−23N+2−107N ≈ 2N queries and find N2−48+N2−108 quadruples having
the property P and, thus, passing T2.

In the case of a random function we will have 2N +2−23N ≈ 2N queries and
will find N2−48 quadruples with property P.

As this test is not enough for distinguishing Luffa’s permutation from a
random one, we need to define test T2.

Test T2 This test is applied only on those pairs that passed T1. It exploits the
property of Section 5.3. The test T2 on a quadruple z works as follows. For each
of the 255 pair of differences (β14, β17) ∈ {0x0, 0x1, . . . , 0xF}2\(0, 0), we create
a corresponding quadruple z′ by an addition of this differences to the positions
14 and 17 in round 1 of z1, z2, z3, z4. The test T2 is passed if and only if, out of
the 255 new quadruples, at least 2 have the property P. For the test of P we
check again first if (z′1, z

′
2) have a collision and only in this case we check (z′3, z

′
4).

For each quadruple z′ it is still valid that the pair (z′3, z
′
4) is obtained from

(z′1, z
′
2) by changing the parity of differences. Thus (z′1, z

′
2) follows the differential

path if and only if (z′3, z
′
4) follows the differential path. In the case of a quadruple

z following the differential path, we find at least 2 new quadruples z′ following
the differential path and thus having property P with probability 2−8.3.

In the random case, we find at least two z′ such that (z′1, z
′
2) has a collision in

the 24 bits with probability 2−33.1. The probability of each of these quadruples
also having a collision for (z′3, z

′
4) is 2−24. So the probability of passing T2 is

2−33.1−2×24 = 2−81.1. We get the same result by considering the probability

1− (1− 2−48)255 − 255× 2−48(1− 2−48)254 = 2−81.

In the worst case we find a collision for all the 255 differences (β14, β17),
which would mean that we have to send about 210 queries to the black-box.
However, the percentage of initial quadruples passing T1 is much less than 2−10.
This means that the dominant costs come from T1.

Combining the two Tests In the case of the permutation of Luffa the
probability of finding a quadruple following the differential path and pass-
ing T2 is 2−108−8.3 = 2−116.3. For a random oracle, or in the general case,
a quadruple build from a random value z1 passes T1 and T2 with probability
2−48−81.1 = 2−129.1. Thus, for N = 2116.3 we will be able to distinguish with
high probability the permutation of Luffa from a random oracle. The time com-
plexity of this distinguisher is 2N queries. The memory complexity is negligible,
since we apply the two tests on the fly.



6 Conclusion

We developed a number of new differential techniques for the analysis of Luffa.
Our results do not threaten the security of Luffa as they are on building blocks
and not on the full hash function. Even though they do not contradict the
designers’ claims, our results improve upon previous work in several ways. When
considering collision attacks on the hash function with limited access to internal
variables, also less degrees of freedom are available for an attacker. Still, we
argue that the new techniques in this paper will be very useful to analyze Luffa
further in this setting. Also, the improvements to the rebound attack are likely
to be useful in the attacks on non-AES-based designs.

Acknowledgements

We would like to thank Christian Rechberger for his many helpful comments
and his contribution to this work.

References

1. Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for
the core functions of Luffa and Hamsi. NIST mailing list, available at http://www.
131002.net/data/papers/AM09.pdf (2009)

2. Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and related-key attack
on the full AES-256. In: CRYPTO’09. Lecture Notes in Computer Science, vol.
5677, pp. 231–249. Springer (2009)

3. Biryukov, A., Kushilevitz, E.: Improved cryptanalysis of RC5. In: EURO-
CRYPT’98. pp. 85–99 (1998)

4. Dai Watanabe, Y.H., Yamada, T., Kaneko, T.: Higher Order Differential Attack
on Step-Reduced Variants of Luffa v1. FSE (2010), to appear

5. De Cannière, C., Sato, H., Watanabe, D.: Hash Function Luffa: Specification. Sub-
mission to NIST (Round 1) (2008), http://ehash.iaik.tugraz.at/uploads/e/
ea/Luffa_Specification.pdf

6. De Cannière, C., Sato, H., Watanabe, D.: Hash Function Luffa: Specification.
Submission to NIST (Round 2) (2009), http://www.sdl.hitachi.co.jp/crypto/
luffa/Luffa_v2_Specification_20091002.pdf

7. De Cannière, C., Sato, H., Watanabe, D.: Hash Function Luffa: Supporting Doc-
ument. Submission to NIST (Round 2) (2009), http://www.sdl.hitachi.co.jp/
crypto/luffa/Luffa_v2_SupportingDocument_20090915.pdf

8. Indesteege, S.: The LANE hash function. Submission to NIST (2008), available at
http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf

9. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved cryptanalysis of
the reduced Grøstl compression function, ECHO permutation and AES block ci-
pher. In: Jacobson, Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) Selected Areas in
Cryptography. LNCS, vol. 5867, pp. 16–35. Springer (2009)

10. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE.
LNCS, vol. 5665, pp. 260–276. Springer (2009)

11. Wagner, D.: A generalized birthday problem. In: CRYPTO’02. Lecture Notes in
Computer Science, vol. 2442, pp. 288–303. Springer (2002)

http://www.131002.net/data/papers/AM09.pdf
http://www.131002.net/data/papers/AM09.pdf
http://ehash.iaik.tugraz.at/uploads/e/ea/Luffa_Specification.pdf
http://ehash.iaik.tugraz.at/uploads/e/ea/Luffa_Specification.pdf
http://www.sdl.hitachi.co.jp/crypto/luffa/Luffa_v2_Specification_20091002.pdf
http://www.sdl.hitachi.co.jp/crypto/luffa/Luffa_v2_Specification_20091002.pdf
http://www.sdl.hitachi.co.jp/crypto/luffa/Luffa_v2_SupportingDocument_20090915.pdf
http://www.sdl.hitachi.co.jp/crypto/luffa/Luffa_v2_SupportingDocument_20090915.pdf
http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf


A The Truncated Differential Path for each Permutation

In the main article we showed only a differential path for the permutation Q0.
Here, we show also the remaining two paths for permutations Q1 and Q2 for
the same position of the output difference as in Q0. In all three examples, the
output difference is in the 14th nibble of the left side.

Fig. 9. Truncated differential path for Q0. The value A corresponds to a differ-
ence of 0001, 0010 or 0011, the value B to 1101.

Fig. 10. Truncated differential path for Q1. The value A corresponds to a dif-
ference of 0010, 0100 or 0110, the value B to 1000.

Fig. 11. Truncated differential path for Q2. The value A corresponds to a dif-
ference of 0100, 1000 or 1100, the value B to 0010.


