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STRUCTURAL WEAKNESSES OF PERMUTATIONS
WITH A LOW DIFFERENTIAL UNIFORMITY AND

GENERALIZED CROOKED FUNCTIONS

Anne Canteaut and Maŕıa Naya-Plasencia

Abstract. Any permutation with a low differential uniformity is shown to be
such that its inverse has a derivative with a large image set. An attack exploit-
ing this structural property is then presented against a recent hash function
proposal, named Maraca, submitted to the SHA-3 competition. Moreover, the
attack can be made much more efficient when the image sets of the derivatives
of the inverse permutation are affine subspaces. This cryptanalytic approach
leads to some generalizations of the notion of crooked functions, and to the
study of their properties.

1. Introduction

Statistical attacks like differential and linear attacks are major cryptanalytic
tools which apply to most cryptographic primitives. Around twenty years after the
seminal paper by Biham and Shamir [BS91], all designers must provide with evi-
dence that their primitives resist these attacks. Therefore, the search for functions
which guarantee a high resistance to these attacks has been a major research area.
Most notably, optimal functions regarding the corresponding security criteria, e.g.
APN functions and AB functions, have been extensively studied. However, opti-
mality is usually due some particular algebraic or combinatorial structure. Thus,
it can be wondered whether the related structure causes a weakness within the
primitive. The most famous example of such a situation is the use of the inverse
function over the field F28 as the nonlinear part of the block cipher standard AES,
which provides with quadratic relations between the input and output bits of each
round [CP02]. More generally, the following question arises: can the use of an
APN function or of a function with a low differential uniformity be exploited for
mounting an attack?
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Here, we introduce another property which is highly related to the differential
uniformity of a permutation: we focus on the highest number ∇F of input differ-
ences which can lead to the same nonzero output difference. There is a trade-off
between this quantity and the differential uniformity, implying that all permuta-
tions which guarantee a good resistance to differential cryptanalysis have a high
∇F . But, we show that a high ∇F may introduce an unexpected weakness within
the underlying primitive: we present an attack based on this property against a new
hash function named Maraca, which has been submitted to the SHA-3 competition.
We also point out that, besides their cardinalities, the algebraic structures of the
image sets of the derivatives of the inverse permutation are of great importance,
in particular the case where these sets are affine subspaces is the most favourable
one for the attacker. In other words, we show that the use of APN permutations
satisfying the crooked property [vDdF00, BdF98] makes the primitive very weak
in the context of Maraca. This also leads us to introduce a natural generalization of
the crooked property in the light of our attack, which captures the functions with
a higher differential uniformity and a higher nonlinearity.

The rest of the paper is organized as follows. In Section 2 the main concepts re-
quired for quantifying the resistance to differential attacks are recalled and the new
quantity ∇F is introduced; the link between both notions is also established. Sec-
tion 3 shows how a high ∇F can exploited for mounting an attack against Maraca.
Moreover, we point out that the attack is even more efficient when the original inner
permutation in Maraca is replaced by a function with a higher nonlinearity or with
a lower differential uniformity, like the inverse function. Since our attack empha-
sizes the role played by the algebraic structures of the image sets of the derivatives,
Section 4 finally focuses on the functions whose derivatives take their values in some
affine subspaces. This leads to the generalization of the crooked property. We then
prove several properties related to these new notions and provide with some open
problems.

2. A structural property of permutations with a low differential
uniformity

2.1. Resistance to differential cryptanalysis. The resistance of a crypto-
graphic primitive to statistical attacks such as linear cryptanalysis or differential
cryptanalysis mainly depends on the resistance provided by its nonlinear building
blocks. These building blocks, which are named S(ubstitution)-boxes in the con-
text of block ciphers, are mappings from Fn

2 into Fm
2 , m > 1. These mappings are

usually chosen to be permutations for many reasons: in the case of a block cipher,
the whole cipher must obviously be a permutation for any fixed key, otherwise some
ciphertexts will correspond to several plaintexts; for other types of primitives, the
use of a permutation enables the designer to guarantee that there is no entropy loss
during the computation (see e.g. [Röc08]).

Differential cryptanalysis has been introduced by Biham and Shamir [BS91]
against block ciphers but it also applies to many other primitives like stream ciphers
or hash functions. The underlying idea is to consider several pairs of inputs (x, x′)
in Fn

2 whose difference is a given constant: x + x′ = α. Then, a differential attack
may be mounted if, at some point of the considered primitive (typically at the
output of the primitive, or before the last iteration), the difference between the
images of x and x′ takes some given value β ∈ Fn

2 more often than the other ones.
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These attacks then exploit the existence of a nonzero input difference α and of an
output difference β such that

F (x + α) + F (x) = β

for many elements x ∈ Fn
2 . For the most commonly used types of block ciphers,

it is known that the existence of such a pair (α, β) depends on the existence of a
similar property for the constituent Sbox [NK95, HLL+00].

Clearly, the resistance to differential cryptanalysis is then related to the prop-
erties of the derivatives of the involved function.

Definition 2.1. Let F be a function from Fn
2 into Fn

2 . For any a ∈ Fn
2 , the

derivative of F in direction a is the function DaF from Fn
2 into Fn

2 defined by

DaF (x) = F (x + a) + F (x), ∀x ∈ Fn
2 .

It is well-known that the resistance of a cipher to differential cryptanalysis can
be quantified by its differential uniformity.

Definition 2.2. [Nyb93] Let F be a function from Fn
2 into Fn

2 . For any a
and b in Fn

2 , we define

∆F (a, b) = #{x ∈ Fn
2 , DaF (x) = b}.

The multiset
{∆F (a, b), a, b ∈ Fn

2 , a 6= 0}
is called the differential spectrum of F . The differential uniformity of F is defined
by

∆F = max
a 6=0, b∈Fn

2

∆F (a, b).

Those functions for which ∆F = 2 are said to be almost perfect nonlinear (APN).

For implementation reasons, most applications handle functions depending on
an even number of variables, n. Since no APN permutation was known in that case
until very recently [Dil09], most applications use permutations F with ∆F = 4.
It is worth noticing that, for applications dedicated to hardware environments, the
implementation cost of the function is also a major constraint. Therefore, the most
commonly used permutation of this type is probably the inverse function x 7→ x2n−2

over the field F2n .

2.2. Practical interpretation of the image sets of the derivatives of
a permutation. We now introduce a new property which is highly related to the
resistance of a permutation F to differential cryptanalysis.

Definition 2.3. Let F be a function from Fn
2 into Fn

2 . For any β ∈ Fn
2 , the

set of differences leading to β is defined by

DF (β) = {α ∈ Fn
2 , ∃x ∈ Fn

2 , DαF (x) = β}.
Then, we define

∇F = max
β∈Fn

2

#DF (β).

Then, ∇F is the highest number of input differences which can lead to the same
output difference. When F is a permutation, then the sets DF (β) correspond to
the image sets of the derivatives of the inverse function F−1, as shown in the next
proposition.
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Proposition 2.4. Let F be a permutation over Fn
2 . For any β ∈ Fn

2 we have:

DF (β) = {α ∈ Fn
2 , ∃x ∈ Fn

2 , F (x + α) + F (x) = β}
= {F−1(x + β) + F−1(x), x ∈ Fn

2} = Im
(
DβF−1

)
.

Proof. Let x ∈ Fn
2 be a solution of

F (x + α) + F (x) = β.

With y = F (x), this equation can equivalently be written as

y + β = F (x + α)

that means
F−1(y + β) = F−1(y) + α.

We then deduce that the set DF (β) consists of all values (F−1(y + β) + F−1(y))
when y varies in Fn

2 . ¤
A particular family of permutations of Fn

2 is the class of all monomial permuta-
tions x 7→ xs where Fn

2 is identified with the finite field with 2n elements. Since the
particular family of monomials permutations has been extensively studied and also
since it corresponds to functions with a reasonable implementation cost in hard-
ware, it plays a particular role both in practice and in theoretical works. In the
following, the degree of a monomial function refers to its multivariate degree, i.e.,
to the degree of the corresponding function from Fn

2 into Fn
2 , even if the function

is described by a univariate polynomial in F2n [X]. Here, it is important to point
out that, for monomial permutations, all sets DF (β), β 6= 0 have the same size and
the same structure.

Lemma 2.5. Let F : x 7→ xs be a monomial permutation of F2n . Let d be
the exponent of the inverse function of F , i.e., ds ≡ 1 mod 2n − 1. Then, for any
nonzero β ∈ F2n ,

DF (β) = βdDF (1).

Proof. This is an immediate consequence of the fact that, for any β 6= 0 and
for any x ∈ F2n ,

DβF−1(x) = (x + β)d + xd

= βd

[(
x

β
+ 1

)d

+
x

β

]

= βdD1F
−1

(
x

β

)
.

¤
Now, since DF (β) corresponds to the image set of a derivative of F−1, we

deduce that any permutation F with a small ∆F has a high ∇F .

Theorem 2.6. Let F be a permutation over Fn
2 and let ∆F denote its differ-

ential uniformity. Then, for any nonzero β ∈ Fn
2 , we have

#DF (β) ≥ 2n

∆F

and equality holds if and only if, for all α ∈ Fn
2 , the equations

F (x + α) + F (x) = β,
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have either 0 or ∆F solutions.

Proof. Let x ∈ Fn
2 be a solution of

F−1(x + β) + F−1(x) = α.

Since F is a permutation, this equivalently means that y = F−1(x) is a solution of

F (y + α) + F (y) = β,

implying that both equations have the same number of solutions, i.e.,

∆F−1(β, α) = ∆F (α, β).

In particular, ∆F = ∆F−1 . Then, we have

2n =
∑

α∈Fn
2

∆F−1(β, α) ≤ #DF (β)max
α

∆F−1(β, α)

≤ #DF (β)∆F−1 ,

with equality if and only if

∀α ∈ Fn
2 , α 6= 0, ∆F (α, β) ∈ {0, ∆F }.

Then, we deduce that, for any β 6= 0,

#DF (β)∆F ≥ 2n.

¤
Note that, for any permutation F , we obviously have DF (0) = {0}.
In particular, the permutations whose differential spectrum consists of two

different values only (i.e. with a two-valued differential spectrum) seem to play a
particular role. It is worth noticing that this situation holds for quadratic power
permutations and their inverses, and also for all APN permutations.

Corollary 2.7. Let F be a permutation of Fn
2 and let ∆F denote its differ-

ential uniformity. Then,

∇F =
2n

∆F

if and only if F has a two-valued differential spectrum. In particular, if ∆F is not
a power of 2, then

∇F >
2n

∆F
.

Proof. The first statement is a direct consequence of the previous theorem.
Moreover, if ∆F is not a power of 2, it is clear that

∇F ∆F = 2n

cannot be satisfied. The fact that ∆F must be a power of 2 when F has a two-valued
differential spectrum was first observed in [BCC09]. ¤

Example 2.8. It follows from the previous corollary that some permutations
may have the same differential uniformity and different values of ∇F . For instance,
let us consider the following monomial permutations of Fn

2 with n = 2t, t odd:

F1 : x 7→ x22k−2k+1 with 2 ≤ k < n and gcd(k, n) = 2,

F2 : x 7→ x2n−2.
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It is known that both permutations are differentially 4-uniform. Actually, the first
one is a monomial permutation corresponding to a Kasami exponent [Kas71] and
it satisfies ∆F1 = 2gcd(k,n) [BCC09, HP08]. Moreover, F1 is known to have a
two-valued differential spectrum. Therefore,

∇F1 = 2n−2.

The second function F2 is the inverse function over F2n . It is well-known that
∆F2(α, β) = 4 if and only if β = α−1 [Nyb93]. Thus, when x varies in F2n and
differs from these 4 solutions, ((x + β)−1 + x−1) takes exactly (2n−1 − 2) distinct
values since each value is obtained for exactly 2 elements x. It follows that

∇F2 = 2n−1 − 1.

We now investigate the extremal possible values for ∇F .

Proposition 2.9. Let F be a permutation of Fn
2 . Then,

1 ≤ ∇F ≤ 2n−1.

Moreover,
• ∇F = 1 if and only if F has degree 1.
• ∇F = 2n−1 if and only if at least one of the derivatives of F−1 is 2-to-1.

This occurs in particular when F is APN.

Proof.

• Obviously, the minimal value ∇F = 1 corresponds to the highest possible
∆F , i.e., ∆F = 2n, which is achieved for functions of degree 1 only.

• The upper bound ∇F ≤ 2n−1 comes from the fact that, for any nonzero β,
DβF−1(x) = DβF−1(x+β) for all x ∈ Fn

2 , implying that #DF (β) ≤ 2n−1.
Moreover, equality holds if and only if there exists a nonzero β ∈ Fn

2 such
that #Im(DβF−1) = 2n−1. Therefore, each value in #Im(DβF−1) is
obtained for exactly two inputs.

¤

It is worth noticing that some permutations with ∆F ≥ 4 might satisfy ∇F =
2n−1. But, if we only consider the subclass of monomial permutations, then ∇F =
2n−1 if and only if F is an APN permutation (since we know from Lemma 2.5 that
all DF (β) have the same size for β 6= 0).

3. Cryptanalysis of the hash function Maraca exploiting a high ∇F

In the previous section, it has been pointed out that, if F is a permutation
with a low differential uniformity (which is suitable in most cryptographic appli-
cations), then there is an output difference β which can be obtained from many
input differences. Thus, we can wonder whether this property, which is inherent
to the permutations which provide with a good resistance to differential crypt-
analysis, may introduce some unexpected weakness in the primitive involving such
permutations. This question is now answered positively: an attack against a re-
cently proposed hash function is presented which exploits the previously mentioned
property.
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3.1. Brief description of Maraca. A cryptographic hash function is a func-
tion which associates to a binary word of any length a digest with a fixed size
(typically, between 256 and 512 bits). Cryptographic hash functions are used for
checking data integrity (e.g., when the hash value is signed with a digital signature
scheme). Therefore, an important security issue is that it must be impossible for
an attacker to find a collision, i.e., two messages with the same hash value. More
precisely, a hash function is considered as broken if there exists an algorithm for
finding a collision more efficiently than the so-called generic algorithm, which con-
sists in computing the hash value of randomly chosen inputs until two inputs with
the same hash value are found.

Maraca is a new keyed hash function which has been submitted to the SHA-
3 competition [Jen08]. It is an iterated hash function: the message is split into
blocks. Then, the initial state of the function is initialized by a constant, and the
internal state is transformed by iterating a function parametrized by the successive
message blocks. The round permutation in Maraca applies to the n-bit internal
state, where n = 1024, but one of the main features is that each message block
is inserted four times, separated by 46 rounds. Then, a usual differential attack
requires the study of the difference propagation on at least 46 rounds of the function.

As a keyed hash algorithm, Maraca takes as inputs a message of any length and
a key, and it produces a hash value in Fh

2 where typical values for h are 256, 384
and 512. The original message is padded in order to get a message whose length
is a multiple of n bits: the n-bit key is first appended to the message as a prefix,
and the resulting message is then padded with a value depending on the key and
on the message length. Then, the padded message is split into blocks Mi where i
varies from 0 to (` − 1), i.e., the first message block M0 corresponds to the key.
Note that our collision attack is considering messages of the same length and with
the same key.

The internal state in Maraca and the message blocks which are inserted at each
round are elements of Fn

2 . Each message block Mi is inserted four times, at Rounds
i, (i+21− 6(i mod 4)), (i+41− 6((i+2) mod 4)) and (i+46). More precisely, the
original value of Mi is inserted at Round i, while rotated versions of Mi are inserted
at the other three rounds, with rotations of 128 bits, 3× 128 bits and 6× 128 bits
respectively. From now on, these rotated versions of Mi are denoted by M ′

i , M ′′
i

and M ′′′
i . It is worth noticing that the last round which uses the message block Mi

is Round i + 46.
The round function at Round i can be decomposed as follows:

• the new message block Mi is inserted for the first time by adding it to the
current internal state (where the addition is the addition in F2);

• an inner permutation Perm of Fn
2 is applied to the internal state;

• (M ′
i−3−6((i+2) mod 4) + M ′′

i−23−6(i mod 4) + M ′′′
i−46) is added to the internal

state;
• two iterations of Perm are applied to the internal state.

Then, we are ready to start the next round and to introduce the message block
Mi+1, if any. If no message block has to be inserted anymore, the all-zero block
is used. The message insertion phase ends up when all message blocks have been
used four times, implying that, for an `-block message, the message insertion phase
consists of (` + 46) rounds. The hash value in Fh

2 is finally extracted from the
internal state after applying 30 additional iterations of Perm.
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l+ Perm- - l+- Perm- - Perm -
??

S

Mi
M ′

i−3−6((i+2) mod 4) ⊕M ′′
i−23−6(i mod 4) ⊕M ′′′

i−46

S′

Figure 1. Round i in Maraca

The inner permutation Perm used in Maraca is formed by 128 parallel appli-
cations of a unique permutation P of F8

2 whose first three coordinates are linear:

P1(x0, . . . , x7) = (x0 ⊕ x4 ⊕ x5 ⊕ x7)
P2(x0, . . . , x7) = (x1 ⊕ x2 ⊕ x3 ⊕ x5)
P3(x0, . . . , x7) = (x1 ⊕ x3 ⊕ x4 ⊕ x5)

and the other five coordinates are quadratic. A constant is then added to the
result and this is finally followed by a bit permutation. Perm can then be seen
as a function which takes as input an element (b1, . . . , b128) in (F8

2)
128, and which

outputs
σ(P (b1), . . . , P (b128))

where σ is a permutation of the n bits composing a word of Fn
2 , i.e.,

σ(x1, . . . , xn) = (xπ(1), . . . , xπ(n))

with π a permutation of {1, . . . , n}.
Since the internal state in Maraca has n = 1024 bits, the generic attack for

finding an internal collision (i.e., two messages which lead to the same final internal
state) requires to hash around 2

n
2 messages, corresponding to at least 46×2512 calls

to the round permutation. Actually, because of the padding and of the fact that
each message block is inserted at four different rounds, we cannot search for colliding
internal states which correspond to different rounds.

The generic collision attack (i.e., for finding two messages with the same hash
value) for h-bit message digests requires to hash around 2

h
2 messages, and requires

at least 46 × 2
h
2 calls to the round permutation. Its time complexity basically

corresponds to the cost of 2
h
2 hashing.

3.2. General principle of the internal collision attack. Our attack against
Maraca consists in finding two padded messages of the same length which lead to
the same internal state. The attack exploits the fact that the inner permutation
Perm has a relatively high ∇Perm. This section first describes the general principle
of the attack and exhibits the underlying property of the inner permutation. How-
ever, we will show that the time or the memory complexity of the attack might be
higher than for the generic collision attack in some cases. This might be overcome
by exploiting some algebraic structure of the inner permutation.

We consider two sets of padded messages using a given key K ∈ Fn
2 . Since

all considered messages before padding are composed of 49 elements in Fn
2 , all of

them are post-padded with the same value, pad, which only depends on K and on
the message length. This value does not play any role in the attack since it is the
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same for all messages and it is involved in the computation after the internal states
collide. Both sets of padded messages are defined as follows:

A = {Ma = (K, a, 047,m,pad), a ∈ Fn
2}

and
B = {Mb = (K, b, 0, γ, 045, m,pad), b ∈ Fn

2}
where γ and m are two fixed elements in Fn

2 which will be defined later and where
0i denotes the all-zero sequence in Fni

2 .
Let Sa (resp. Sb) denote the internal state obtained at the beginning of

Round 49 when Ma (resp. Mb) is hashed. We aim at finding a collision on the
internal state at Round 49, before the second application of Perm, as depicted on
Figure 2. Round 49 forMa (resp. Mb) actually consists of the following operations:

• add m to the current internal state;
• apply Perm to the internal state;
• add 0 (resp. γ′′′) to the internal state;
• apply two additional iterations of Perm.

µ´
¶³
+µ´

¶³
+ Perm -

?
--

?
-

m 0

Sa S

µ´
¶³
+µ´

¶³
+ Perm -

?
--

?
-

m

SSb

γ′′′

Figure 2. Beginning of Round 49 for Ma (top) and Mb (bottom)

This comes from the fact that all message blocks Mi, 3 ≤ i ≤ 48, in Ma vanish,
implying that there is no message insertion after the first application of Perm at
Round 49. All message blocks Mi, 3 ≤ i ≤ 48, in Mb vanish except M3 = γ,
implying that γ′′′, corresponding to γ rotated by 6 × 128, is xored to the internal
state after the first application of Perm at Round 49.

Then, all message blocks which are inserted after Round 49 are equal for both
message sets. Thus, an internal collision occurs as soon as we are able to find three
message blocks a, b and m which satisfy

(3.1) Perm(Sa + m) = Perm(Sb + m) + γ′′′.

It is worth noticing that both Sa and Sb are independent of m.
Equation (3.1) with x = Sa + m and δ = γ′′′ shows that finding an internal

collision for both previously described message sets is equivalent to finding a pair
(Sa, Sb) of internal states in Fn

2 such that

(3.2) ∃x ∈ Fn
2 , Perm(x + Sa + Sb) + Perm(x) = δ,



10 ANNE CANTEAUT AND MARÍA NAYA-PLASENCIA

for a fixed value of δ chosen by the attacker.
Equivalently, the attack consists in finding a pair (Sa, Sb) of internal states

such that (Sa + Sb) ∈ DPerm(δ). As a comparison, the generic birthday attack for
finding an internal collision consists in finding a pair (Sa, Sb) of internal states in
Fn

2 such that Sa+Sb = 0. Then, δ will be chosen such that DPerm(δ) has the largest
possible size, i.e., such that

#DPerm(δ) = ∇Perm.

Then, randomly choosing

Na = Nb =
2

n
2√∇Perm

messages in A and in B enables us to find a pair of internal states (Sa, Sb) at the
beginning of Round 49 with Sa + Sb ∈ DPerm(δ). The data complexity of our
attack, i.e. the number of calls to the hash function, is therefore smaller than
the data complexity of the generic internal collision attack as soon as ∇Perm > 1,
i.e., as soon as Perm is not of degree 1. In the case where the size of the internal
state, n, is larger that the length h of the message digest, as in Maraca, our attack
leads to a collision attack with data complexity smaller than the generic collision
attack if ∇Perm > 2n−h. Note that, in our attack, each call to the hash function
actually corresponds to 49 calls to the round function since the first 49 blocks in
each message Ma and Mb have to be proceeded but message block 0 is constant
and has to be evaluated only once. As a comparison, the generic collision attack
requires at least 46 calls to the round functions (and 30 additional calls to Perm)
for each message which is hashed.

Time complexity of the general attack. However, if the set of input differ-
ences DPerm(δ) does not have any particular structure, determining whether two
internal states are such that Sa + Sb ∈ DPerm(δ) might be very time-consuming.
The only general strategy which may have time complexity lower than 2

n
2 consists

in storing all Na values of Sa and all Nb values of Sb in two tables. Then, all
NaNb differences must be computed and compared to the elements in D(δ). This
procedure has time complexity

NaNb log(∇Perm) = 2n log(∇Perm)
∇Perm

.

The attack is then faster than the generic internal collision attack only if ∇Perm >

2
n
2 , and it is faster than the generic collision attack only if ∇Perm > 2n−h

2 . But, in
general, comparing all differences Sa+Sb with the elements of DPerm(δ) requires the
storage of DPerm(δ), which needs an amount of memory higher than the complexity
of the generic attack. However, this memory complexity can be much lower in some
cases. For instance, if Perm corresponds to the concatenation of several copies of a
smaller permutation P of Fk

2 (even if it is followed by an affine permutation), then
the attacker has to store the elements in

DP (δ′) = {α ∈ Fk
2 , ∃x ∈ Fk

2 , P (x + α) + P (x) = δ′}
only, for some δ′ ∈ Fk

2 .
Let us now investigate different choices for Perm and their impacts on the

complexity of our attack. Since the attack is faster than the generic attack if
∇Perm > 2n−h

2 , we deduce that this will be always the case if ∆Perm ≤ 2
h
2 . In the

case where Perm consists of 128 copies of a permutation P of F8
2, like in Maraca,
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and for h = 512, this implies that Maraca is broken by our attack as soon as
∆P ≤ 4. It is worth noticing that this is obviously not a necessary condition.

Attack against Maraca using the inverse permutation. A natural choice for the
permutation P of F8

2 is the inverse function over F28 as in the AES, or any lin-
early equivalent permutation. It has been shown in Example 2.8 that the inverse
function P over F2s satisfies

#DP (δ) = 2s−1 − 1

for any nonzero δ ∈ F2s . Then, with Maraca’s parameters, ∇Perm = (27 − 1)128 =
2894.5. Our attack then requires to hash

Na = Nb = 264.7

messages in A and B. It is faster than the generic collision attack since examining
all differences (Sa + Sb) requires

128× 895× 2129.4 = 2146 operations

and the memory cost is roughly 276 bits. Therefore, if P is replaced by the inverse
function in Maraca, our attack is efficient and its complexity is lower than the
complexity of the generic attack when the length of the message digest exceeds 292.

Attack against Maraca using the original permutation. However, the permu-
tation P which has been originally chosen in Maraca has not been so carefully
designed regarding to differential attacks. The highest value for #DP (δ) is 21, and
it is obtained for 20 output differences δ ∈ F8

2. An example of a such an output
difference is δ = 0x3. Then, we deduce that ∇Perm = (21)128, which implies that
the previously described attack is not faster than the generic collision attack.

3.3. Exploiting the algebraic structure of DPerm(δ). Determining whether
Sa + Sb ∈ DPerm(δ) for all (Sa, Sb) is much easier when DPerm(δ) has a simple al-
gebraic structure.

When DPerm(δ) is an affine subspace or contains a large affine subspace. The
simplest case is when DPerm(δ) is an affine subspace. Since Perm is a permuta-
tion, DPerm(δ) does not contain 0, implying that DPerm(δ) is a coset of a linear
subspace V . Let W be such that V ⊕W = Fn

2 . Then, we consider the case where

DPerm(δ) = c + V, c ∈ W.

Now, all pairs (Sa, Sb) with Sa + Sb ∈ DPerm(δ) can be found by storing the list of
all the elements sa in W corresponding to the restrictions of Sa to W . Then, for
each Sb, the attacker computes sb = (Sb)W and she checks whether sb + c belongs
to the list where c is the constant defining the affine subspace.

Then, when DPerm(δ) is an affine subspace of dimension d, the time complexity
of the attack is 2(n − d)Na = 2(n − d)2

n−d
2 . It requires the storage of a list of

(n−d)2
n−d

2 bits. The attack then improves the generic collision attack if d > n−h.
It is worth noticing that the attack only exploits the fact that any element in

the considered affine subspace belongs to DPerm(δ). Therefore, the same attack
can be mounted if DPerm(δ) contains an affine subspace V of dimension d. In both
cases, we have Na = Nb = 2

n−d
2 .
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When DPerm(δ) is included in an affine subspace. In the case where the largest
affine subspace included in DPerm(δ) has dimension d ≤ n − h, then the time
complexity of our attack exceeds the time complexity of the generic collision attack.
In this case, the existence of a larger (affine) subspace V of dimension d which
contains many elements of DPerm(δ) can be used as a sieve for selecting the pairs
(Sa, Sb) whose differences belong to DPerm(δ). The attack then aims at finding a
pair (Sa, Sb) such that (Sa + Sb) ∈ (DPerm(δ) ∩ V ). The data complexity has now
increased to

Na = Nb =
2

n
2√

#(DPerm(δ) ∩ V )
which improves the generic collision attack if

# (DPerm(δ) ∩ V ) > 2n−h.

But, the time complexity is much lower. Actually, once the much smaller list of
pairs with difference in V has been obtained, all differences (Sa + Sb) from this
list can be exhaustively computed until a difference in DPerm(δ) ∩ V is found. The
sieving phase selects

NaNb

2n−d
= 2d 1

# (DPerm(δ) ∩ V )

pairs (Sa, Sb) among the 2n 1
#(DPerm(δ)∩V ) possible pairs. The overall time complex-

ity is then
2(n− d)2

n
2√

#(DPerm(δ) ∩ V )
+

2d log2(# (DPerm(δ) ∩ V ))
# (DPerm(δ) ∩ V )

,

where the last term is the cost for checking whether a difference in the previous
list belongs to DPerm(δ) ∩ V . The attack is then faster than the generic collision
attack as soon as the proportion of elements in V which belong to DPerm(δ), i.e.
2−d#(D(δ) ∩ V ) exceeds 2−

h
2 .

3.4. Attack on Maraca-512. The previously described situation corresponds
to the situation of Maraca. Actually, since the first three coordinates of P , Pi,
1 ≤ i ≤ 3, are linear, we have that, for any δ ∈ F8

2, DP (δ) is included in a 5-
dimensional affine subspace. Thus, for the complete inner permutation Perm, there
is an input difference δ ∈ Fn

2 , such that #DPerm(δ) = (21)128 and DPerm(δ) is
included in an affine subspace V of dimension 640. Note that this is a particular
case of the attack described in the previous section where it was allowed that some
elements of DPerm(δ) do not belong to V . With the parameters used in Maraca,
the attack requires to compute the internal states at the beginning of Round 49 for

Na = Nb = 2230.9

messages in A and in B. Using this subspace, we are able to find all pairs (Sa, Sb)
whose differences belong to V . The average number of such pairs (Sa, Sb) is

NaNb

2384
= 278.

Now, for those 278 favorable pairs of internal states, we have to check whether
(Sa + Sb) belongs to DPerm(δ). This occurs with probability

#DPerm(δ)
25×128

= 2−78.
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Once such a pair has been found, we can pick up a value of x which makes possible
to obtain the desired output difference from the input difference Sa + Sb. Such an
x can be constructed as an element in (F8

2)
128, (µ1, . . . , µ128), defined by

P (µi + (Sa)i) + P (µi + (Sb)i) = δi

where Sa, Sb and δ are seen as elements in (F8
2)

128.
This procedure then leads to a pair of messages Ma ∈ A and Mb ∈ B such

that
Perm(Sa + m) = Perm(Sb + m) + γ′′′,

i.e., to an internal collision after Round 49. Since all the blocks which must be
inserted in the following rounds are the same for both messages, we clearly obtain an
internal collision after the computation of the hash value. The attack then requires
fewer than 2232×49 = 2237.5 calls to the round function. The memory complexity is
2239.5 bits. From the previous analysis, we deduce that the overall time complexity
is 2240.5 operations, which is clearly less than for the generic collision attack when
the length of the message digest is greater than or equal to 512. Then, Maraca with
message digest of length 512 can be considered as broken.

4. Algebraic structure of DF (δ) and generalized crooked functions

In the light of the previously described attack, it seems important to char-
acterize the permutations F having some DF (δ) which coincide (or almost co-
incide) with a large affine subspace. A very particular case has been investi-
gated in [BdF98, vDdF00] where the notion of crooked permutations have been
introduced. Here, we recall this notion in the more general sense defined by
Kyureghyan [Kyu07] which also includes the case where the function is not a
permutation, and then where Im(DβF ) is a linear subspace of codimension 1.

Definition 4.1. [BdF98, Kyu07] A function from Fn
2 into Fn

2 is said to be
crooked if, for any nonzero β ∈ Fn

2 , Im(DβF ) is a linear or affine subspace of
codimension 1.

It is known that all crooked permutations are almost bent functions [CC03,
Lemma 5], which are a particular case of APN functions depending on an odd num-
ber of variables. However, it is highly conjectured that the crooked functions exactly
correspond to the quadratic APN functions. This has been proved in [Kyu07] in
the case of monomial functions and in [BK08] in the case of binomials.

But, in our case, we are interested in the case where DF (δ) is an (affine) sub-
space but we do not require its codimension to be 1. This generalization then
intends to capture some functions with a slightly larger differential uniformity, typ-
ically functions with ∆F ≤ 8.

Definition 4.2. A function from Fn
2 into Fn

2 is said to be crooked of codimen-
sion d if, for any nonzero β ∈ Fn

2 , Im(DβF ) is an (affine) subspace of codimen-
sion d. In particular, crooked functions of codimension 1 correspond to the classical
crooked functions as previously defined.

A weaker notion, which has been used in our attack against Maraca, cor-
responds to the situation where Im(DβF−1) is not an (affine) subspace but is
included in an (affine) subspace. Such situations are captured by the following
weakened definition.
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Definition 4.3. A function from Fn
2 into Fn

2 is said to be weakly crooked of
codimension d, d ≥ 1, if, for any nonzero β ∈ Fn

2 , Im(DβF ) is included in an affine
subspace of codimension d.

For instance, all quadratic functions are weakly crooked of codimension d for
some d. Obviously, any weakly crooked function of codimension d is also weakly
crooked function of codimension d′ for all d′ ≤ d. Then, the relevant parameter is
the largest d such that F is weakly crooked function of codimension d. For instance,
the inverse of the permutation P of F8

2 which is used in Maraca is weakly crooked
of codimension 3.

It is worth noticing that, when F is a crooked (resp. weakly crooked) permu-
tation of codimension d, all Im(DβF ) are (resp. are included in) affine subspaces,
i.e., cosets of linear subspaces.

(Weakly) crooked functions are obviously related to the functions whose com-
ponents have some linear structures, in the sense of the following definition.

Definition 4.4. Let F be a function from Fn
2 into Fm

2 . An element a ∈ Fn
2

is called a linear structure for F if DaF is constant. Clearly, the set of all linear
structures for F is a linear space.

In the following, we define the components of a function from Fn
2 into Fn

2 like
in [Nyb95].

Definition 4.5. Let F be a function from Fn
2 into Fn

2 . The linear combinations
of the coordinates of F are the Boolean functions

fλ : x ∈ Fn
2 7→ λ · F (x), λ ∈ Fn

2 ,

where x · y denotes the usual dot product. The functions fλ are called the compo-
nents of F .

Proposition 4.6. Let F be a function from Fn
2 into Fn

2 . Let a be a nonzero
element in Fn

2 and V a subspace of codimension d. Then,

Im(DaF ) ⊂ γ + V

for some γ ∈ Fn
2 if and only if a is a linear structure of the components fλ for all

λ ∈ V ⊥. Moreover, for all λ in V ⊥, Dafλ = λ · γ.

Proof. The result is directly deduced from the following fact.

Im(DaF ) ⊂ γ + V

if and only if, for any λ ∈ V ⊥, we have

λ ·DaF (x) = Dafλ(x) = λ · γ, ∀x ∈ Fn
2 .

¤

Kyureghyan proved [Kyu07, Corollary 6] that the linear space of any nonzero
component of a monomial permutation is equal to {0} except for quadratic permu-
tations. We then deduce the following generalization of her result on the charac-
terization of monomial crooked permutations.

Proposition 4.7. A monomial permutation is weakly crooked of codimension d
for some d if and only if it has degree 2.
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It is known [CC03, Kyu07] that all crooked permutations of codimension 1
are almost bent, that means that their Walsh coefficients

∑

x∈Fn
2

(−1)fλ(x)+α·x

for all λ and α in Fn
2 take three values only, ±2

n+1
2 and 0. This proof cannot

be generalized directly to any codimension since it also involves the number of
preimages x of all elements of Im(DβF ), i.e., the number of x such that DβF (x) = δ
for all δ ∈ Im(DβF ). This number is known to be 2 in the case of crooked functions
of codimension 1, but the fact that all values in Im(DβF ) have the same number of
preimages is only true if F has a two-valued differential spectrum. However, even
if the complete Walsh spectrum of crooked functions of codimension d cannot be
determined in the general case, a lower bound on its maximum value, i.e., an upper
bound on the nonlinearity, can be obtained.

Proposition 4.8. Let F be a function from Fn
2 into Fn

2 . If F is weakly crooked
of codimension d, then F has at least a component fλ, λ 6= 0, which has a linear
space of dimension greater than or equal to d, implying that the highest magnitude
of its Walsh coefficients satisfies

L(F ) ≥ 2
n+d

2 .

Proof. By hypothesis, for any nonzero a ∈ Fn
2 , there exists a subspace Va of

codimension d such that Im(DaF ) ⊂ γa + Va for some γa ∈ Fn
2 . Proposition 4.6

then implies that a is a linear structure for all components fλ, for λ ∈ V ⊥
a . Including

the case a = 0 which is a linear structure for all components, we deduce that

#{(λ, a) ∈ Fn
2 × Fn

2 : Dafλ = cst} ≥ 2d(2n − 1) + 2n.

It follows that

(2n − 1)max
λ 6=0

#{a ∈ Fn
2 : Dafλ = cst} ≥ #{(λ, a) ∈ Fn

2 \ {0} × Fn
2 : Dafλ = cst}

≥ 2d(2n − 1).

Since the set of linear structures is a linear space, there exists at least one component
fλ, λ 6= 0, which has a linear space of dimension greater than or equal to d. The
lower bound on the highest magnitude of the Walsh coefficients of fλ then follows
from [CCCF00, Th. 3]. ¤

However, the question of the generalization of the conjecture on classical crooked
function is an open problem.

Open problem 4.9. Does there exist any permutation F over Fn
2 with deg(F ) >

2 such that F is crooked of codimension d for some d ≥ 1?

Finally, it must be noticed that our attack requires DF−1(β) to be (included
in) an affine subspace for a single nonzero element β ∈ Fn

2 , not for all them. In
the following, such functions are said to be (weakly) crooked of codimension d with
respect to β. It is worth noticing that both notions are equivalent in the case of
monomial functions (see Lemma 2.5).

Open problem 4.10. Characterize the permutations F over Fn
2 such that,

there exists a nonzero element a ∈ Fn
2 for which Im(DaF ) is an affine subspace.
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5. Conclusions

We have introduced a new quantity ∇F , corresponding to the highest cardinal-
ity of the image sets of the derivatives of a function and we have pointed out, by a
concrete attack against a recent hash function proposal, that the use of a permuta-
tion with a high ∇F might introduce some weaknesses in a cryptographic primitive.
Unfortunately, for any permutation, having a high ∇F is a natural consequence of
a good resistance to differential cryptanalysis. For instance, it appears that replac-
ing the original permutation of Maraca by a commonly used Sbox like the inverse
function increases its vulnerability. Moreover, our attack also points out that the
situation where the image sets of the derivatives coincide (or almost coincide) with
affine subspaces is the most favourable case for the attacker. Therefore, the use
of crooked permutations (and of the generalizations we have introduced) must be
avoided in the design a cryptographic primitive. On the other hand, we believe that
our generalization of the notion of crooked functions may be helpful for solving the
well-known open problem on the existence of crooked functions of degree greater
than 2.
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