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Abstract. This paper presents two key-recovery attacks against the
modification of Achterbahn-128/80 proposed by the authors at SASC
2007 due to the previous attacks. The 80-bit variant, Achterbahn-80,
was limited to produce at most 252 bits of keystream with the same pair
of key and IV, while Achterbahn-128 was limited to 256 bits. The attack
against Achterbahn-80 has complexity 264.85 and needs fewer than 252

bits of keystream, and the one against Achterbahn-128 has complexity
2104 and needs fewer than 256 keystream bits. These attacks are based
on the previous ones. The attack against Achterbahn-80 uses a new idea
which allows us to reduce the required keystream length.
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1 Introduction

The invention of public-key cryptography in the mid 1970’s was a great progress.
However, symmetric ciphers are still widely used because they are the only ones
that can achieve high-speed or low-cost encryption. Today, we find symmetric
ciphers in GSM mobile phones, in credit cards... Stream ciphers then form a
subgroup of symmetric ciphers. In synchronous additive stream ciphers, the ci-
phertext is obtained by combining with a bitwise XOR the message with a secret
binary sequence of the same length. This secret sequence is usually a pseudo-
random one, that is generated with the help of a secret key by a pseudo-random
generator, and it is called the keystream. Such pseudo-random generators are ini-
tialized by the secret key and they build in a deterministic way a long sequence
that we cannot distinguish from a random one if we do not know the secret
key. The eSTREAM project is a project launched by the European network
ECRYPT about the conception of new stream ciphers. About thirty algorithms
have been proposed in April 2005. Actually, in phase 3 of the project, 16 are
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still being evaluated. Achterbahn [3, 5] is a stream cipher proposal submitted
to the eSTREAM project that passed to phase 2 but not to phase 3 of eS-
TREAM. After the cryptanalysis of the first two versions [8, 10], it moved on
to a new one called Achterbahn-128/80 [4] published in June 2006. Achterbahn-
128/80 corresponds to two keystream generators with key sizes of 128 bits and
80 bits, respectively. Their maximal keystream length was limited to 263, but,
in order to avoid the attacks presented in [9, 11], the maximal keystream length
was re-limited to produce at most 252 bits of keystream with the same pair of key
and IV for Achterbahn-80, while Achterbahn-128 was limited to 256 bits. This
paper presents two key-recovery attacks against this modification to Achter-
bahn-128/80, proposed by the authors at SASC 2007 [6]. The attack against
Achterbahn-80 has complexity 264.85 and needs fewer than 252 bits of keystream,
and the one against Achterbahn-128 has complexity 2104 and needs fewer than
256 keystream bits. These attacks are based on the previous ones. The attack
against Achterbahn-80 uses a new idea which allows us to reduce the required
keystream length.

The paper is organized as follows. Section 2 presents the main specifications
of Achterbahn-128/80. Section 3 then describes a distinguishing attack against
Achterbahn-80. Section 4 presents a distinguishing attack against Achterbahn-
128. Section 5 describes how this previous distinguishing attacks can be trans-
formed into key-recovery attacks.

2 Achterbahn-128/80

Achterbahn-128 and Achterbahn-80 are composed of a number of feedback shift
registers whose outputs are taken as inputs of a Boolean combining function and
where the keystream is the output of this function at each instant t.
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2.1 Main Specifications of Achterbahn-128

Achterbahn-128 consistis of 13 binary nonlinear feedback shift registers (NLF-
SRs) denoted by R0, R1, . . . , R12. The length of register i is Li = 21 + i for
i = 0, 1, . . . , 12. These NLFSRs are primitive in the sense that their periods Ti

are equal to 2Li − 1. Each sequence which is used as an input to the Boolean
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combining function is not the output sequence of the NLFSR directly, but a
shifted version of itself. The shift amount depends on the register number, but it
is fixed for each register. In the following, xi = (xi(t))t≥0 for 0 ≤ i ≤ 12 denotes
the shifted version of the output of the register i at time t. The output of the
keystream generator at time t, denoted by S(t), is the one of the Boolean com-
bining function F with the inputs corresponding to the output sequences of the
NLFSRs correctly shifted, i.e. S(t) = F (x0(t), . . . , x12(t)). The algebraic normal
form of the 13-variable combining function F is given in [4]. Its main crypto-
graphic properties are: balancedness, algebraic degree 4, correlation immunity
order 8, nonlinearity 3584, algebraic immunity 4.

2.2 Main Specifications of Achterbahn-80

Achterbahn-80 consists of 11 registers, which are the same ones as in the above
case, except for the first and the last ones. The Boolean combining function, G,
is a sub-function of F :

G(x1, . . . , x11) = F (0, x1, . . . , x11, 0).

Its main cryptographic properties are: balancedness, algebraic degree 4, correla-
tion immunity order 6, nonlinearity 896, algebraic immunity 4. As we can see,
Achterbahn-128 contains Achterbahn-80 as a substructure.

2.3 The Key-Loading Algorithm

The key-loading algorithm uses the key K of 128/80 bits and an initial value
IV of 128/80 bits. The method for initializing the registers is the following one:
first of all, all registers are filled with the bits of K||IV . After that, Register i is
clocked a−Li times where a is the number of bits of K||IV , and the remaining
bits of K||IV are added to the feedback bit. Then, each register outputs one bit.
Those bits are taken as inputs of the Boolean combining function, which outputs
a new bit. This bit is now added to the feedbacks for 32 additional clockings.
Then we overwrite the last cell of each register with a 1, in order to avoid the
all zero state.

This algorithm has been modified in relation to the initial versions of Achter-
bahn. The aim of this modification is to prevent the attacker from recovering
the key K from the knowledge of the initial states of some registers.

2.4 Keystream Maximal Length

In the first version of Achterbahn-128/80, the maximal keystream length was
limited to 263. As this version was attacked [9, 11], the authors proposed a new
limitation of the keystream length [6], which was 252 for Achterbahn-80 and
256 for Achterbahn-128. We present here two attacks against both generators,
which are based on the previous ones. The attack against the 80-bit variant,
Achterbahn-80, has complexity 264.85 and needs fewer than 252 keystream bits.
The attack against Achterbahn-128 requires 2104 operations and fewer than 256

keystream bits.
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3 Distinguishing Attack against Achterbahn-80

Now, we describe a new attack against Achterbahn-80 with a complexity of 264.85

where a linear approximation of the output function is considered. The attack is
a distinguishing attack but it also allows to recover the initial states of certain
constituent registers.

This attack is very similar to the previous attack against Achterbahn-80 pre-
sented in [11]. It relies on a biased parity-check relation between the keystream
bits which holds with probability

p =
1
2
(1 + η) with |η| � 1,

where η is the bias of the relation. The attack exploits an s-variable linear ap-
proximation � of the combining function G. For now on we denote by Ti,j the
least common multiple of the periods of Registers i and j. We build the parity-
check equations, as the ones introduced in [10] and used in [11] derived from �:

�(t) =
s∑

j=1

xij (t)

at 2m different instants (t+τ), where τ varies in the set of the linear combinations
with 0 − 1 coefficients of Ti1,i2 , Ti3,i4 , . . . , Ti2m−1,i2m . In the following, this set is
denoted by 〈Ti1,i2 , . . . , Ti2m−1,i2m〉, i.e.,

I = 〈Ti1,i2 , . . . , Ti2m−1,i2m〉 =

⎧
⎨

⎩

m∑

j=1

cjTi2j−1,i2j , c1, . . . , cm ∈ {0, 1}
⎫
⎬

⎭ .

We know that: ∑

τ∈I
xi1 (t + τ) + . . . + xi2m (t + τ) = 0,

this leads to a parity-check sequence �� defined by:

��(t) =
∑

τ∈I
�(t + τ) =

∑

τ∈I

(
xi2m+1 (t + τ) + . . . + xis(t + τ)

)
.

Note that each term with index i2j−1 is associated to the corresponding term
i2j to build the parity check, because it enables us to eliminate the influence of
2m registers in a parity-check with 2m terms only.

Approximation of the combining function. Following this general principle, our
attack exploits the following linear approximation of the combining function G:

�(x1, . . . , x11) = x1 + x3 + x4 + x5 + x6 + x7 + x10.

It is worth noticing that, since the combining function G is 6-resilient, any
approximation of G involves at least 7 input variables. Moreover, the highest bias
corresponding to an approximation of G by a 7-variable function is achieved by
a function of degree one as proved in [2].

For �(t) = x1(t)+ x3(t)+ x4(t)+ x5(t)+ x6(t) + x7(t) + x10(t), the keystream
(S(t))t≥0 satisfies Pr[S(t) = �(t)] = 1

2 (1 − 2−3).
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Parity-checks. Let us build a parity-check as follows:

��(t) = �(t) + �(t + T3,7) + �(t + T4,5) + �(t + T3,7 + T4,5).

Therefore, this corresponds to s = 7 and m = 2 in the general description of
the attack. The terms containing the sequences x3, x4, x5, x7 vanish in ��(t), so
��(t) depends exclusively on the sequences x1, x6 and x10. Thus, we have

��(t) = σ1(t) + σ6(t) + σ10(t),

where

σi(t) = xi(t) + xi(t + T3,7) + xi(t + T4,5) + xi(t + T3,7 + T4,5).

The period T4,5 is 251 and the period T3,7 is smaller than 249 as T3 and T7 have
common factors, so to build those parity checks we need less than the maximal
keystream length allowed.

Adding four times the approximation has the effect of multiplying the bias
four times, so

σ(t) = S(t) + S(t + T3,7) + S(t + T4,5) + S(t + T3,7 + T4,5)

where (S(t))t≥0 is the keystream satisfies

Pr[σ(t) = σ1(t) + σ6(t) + σ10(t)] =
1
2
(1 + η)

with η = 2−4×3.
We now decimate σ(t) by the period of Register 1, which is involved in the

parity-check, so we create like this a new parity-check:

σ′(t) = σ(t(222 − 1)).

Now, we have that σ′(t) is an approximation of (σ6(t(222 −1))+σ10(t(222 −1)))
with biais +η or −η. Then, if we did as in the previous attack in [11], the one
before the new keystream limitation, where we performed an exhaustive search
for the initial states of Registers 6 and 10, we would need

23×4×2 × 2 × (58 − 2) × ln(2) = 230.29

parity-checks σ′(t) to detect this bias. As we are decimating by the period of the
Register 1, we would need 230.29 × 222 = 252.29 keystream bits to perform the
attack, and it is over the limitation, so we cannot do that.

In the previous attack we took only the first bit of the keystream and dec-
imated by the period of the first register 230.29 times. What we do now is to
consider the first four consecutive shifts of the keystream and for each one, we
obtain a sequence of 230.29

4 = 228.29 bits by decimating it by the period of the
first register 228.29 times. Thus, we consider the first 250.29 bits of the keystream
and we compute the 4 × 228.29 = 230.29 parity checks:

S (t(222 − 1) + i) + S(t(222 − 1) + i + T3,7) + S(t(222 − 1) + i + T4,5) +
S (t(222 − 1) + i + T3,7 + T4,5)



Cryptanalysis of Achterbahn-128/80 with a New Keystream Limitation 147

for i ∈ {0, . . . , 3} and 0 ≤ t < 228.29. This way, the required number of keystream
bits is reduced to 228.29×222 = 250.29 and respects the maximal keystream length
permitted.

Thus, we perform an exhaustive search over Registers 6 and 10, adapting to
our new situation the algorithm introduced in [11]. We will have to compute, for
each one of the previously mentioned sequences, so for each i ∈ {0, 1, 2, 3}, the
following sum:

S =
228.29−1∑

t′=0

σ(t′T1 + i) ⊕ ��(t′T1 + i)

Using the decomposition

228.29 = 2T6 + T ′ with T ′ = 225.83,

we obtain

S =
228.29−1∑

t′=0

σ(t′T1 + i) ⊕ ��(t′T1 + i)

=
T ′∑

k=0

2∑

t=0

σ((T6t + k)T1 + i) ⊕ ��((T6t + k)T1 + i)

+
T6−1∑

k=T ′+1

1∑

t=0

σ((T6t + k)T1 + i) ⊕ ��((T6t + k)T1 + i)

=
T ′∑

k=0

2∑

t=0

σ((T6t + k)T1 + i) ⊕ σ10((T6t + k)T1 + i) ⊕ σ6((T6t + k)T1 + i)

+
T6−1∑

k=T ′+1

1∑

t=0

σ((T6t + k)T1 + i) ⊕ σ10((T6t + k)T1 + i) ⊕ σ6((T6t + k)T1 + i)

=
T ′∑

k=0

[
(σ6(kT1 + i) ⊕ 1)

(
2∑

t=0

σ((T6t + k)T1 + i) ⊕ σ10((T6t + k)T1 + i)

)

+ σ6(kT1 + i)

(
3 −

2∑

t=0

σ((T6t + k)T1 + i) ⊕ σ10((T6t + k)T1 + i)

)]

+
T6−1∑

k=T ′

[
(σ6(kT1 + i) ⊕ 1)

(
1∑

t=0

σ((T6t + k)T1 + i) ⊕ σ10((T6t + k)T1 + i)

)

+ σ6(kT1 + i)

(
2 −

1∑

t=0

σ((T6t + k)T1 + i) ⊕ σ10((T6t + k)T1 + i)

)]
,

where σ(t), σ6(t) and σ10(t) are the parity checks computed at the instant t with
the keystream, the sequence generated by Register 6 and the one generated by
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Register 10 respectively. Note that we have to split the sum at T ′, because for
k ≤ T ′ we have to sum the parity checks at 3 instants but for k > T ′ we only
have to sum them at 2 instants, since T ′ + 2 × T6 = 228.29. The sum can be
written in the previous way since σ6((T6t + k)T1 + i) is constant for fixed values
of k and i. The attack then consists of the following steps:

– We choose an initial state for Register 6, e.g. the all-one initial state. We
compute and save a binary vector V6 of length T6, V6[k] = σ6(k), where the
sequence with whom we are computing σ6(k) is generated from the chosen
initial state. The complexity of this state is T6 × 22 operations.

– For each possible initial state of Register 10 (so 231−1 possibilities):
• we compute and save four vectors V10,i, where i ∈ {0, 1, 2, 3}, each one

composed of T6 integers of 2 bits.

V10,i[k] =
q∑

t=0

σ((T6t + k)T1 + i) ⊕ σ10((T6t + k)T1 + i),

where q = 2 if k ≤ T ′ and q = 1 if k > T ′. The time complexity of this
step is:

22
(
3 × 225.83 + 2(227 − 1 − 225.83)

)
(7 + 2) = 22 × 228.29 × 23.1 = 233.49

for each possible initial state of Register 10, where 22 is the number of
vectors that we are computing, 7 corresponds to the number of operations
required for computing each (σ(t) + σ10(t)) and 228.29 × 2 is the cost of
summing up 228.29 integers of 2 bits.

• For each possible p from 0 to T6 − 1:
∗ we define V6,i of length T6, ∀i ∈ {0, 1, 2, 3}: V6,i[k] = V6[k + p + i

mod T6].
Actually, (V6,i[k])k<T6

corresponds to (σ6(k))k<T6
when the initial

state of Register 6 corresponds to the internal state obtained after
clocking (i + p) times Register 6 from the all-one initial state.

∗ With the eight vectors that we have obtained

(V10,0, . . . , V10,3, V6,0, . . . , V6,3),

we compute for each i ∈ {0, 1, 2, 3}:

Wi =
T ′∑

k=0

[(V6,i[k] ⊕ 1)V10,i[k] + V6,i[k] (3 − V10,i[k])] +

T6−1∑

k=T ′+1

[(V6,i[k] ⊕ 1)V10,i[k] + V6,i[k] (2 − V10,i[k])] .

When we do this with the correct initial states of Registers 6 and
10, we will find an important bias for the four Wi.
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The complexity of this point would be, for each p 22 × T6 × 8 = 232, so
232 × 227 = 259. The total number of memory accesses for each possible
initial state of Register 10 is

4 × T6 + 4 × 2 × T6 = 230.3,

where the first term corresponds to the storage of V10,i and the second
one corresponds to the accesses to V6,i and V10,i to compute Wi. But we
can speed up the process by defining a new vector,

V ′
10,j [k] = V10,j [k] + ct

where ct = 0 if k ≤ T ′ and ct = 0.5 if k > T ′.
Then, for each i we are going to compute:

T6−1∑

k′=0

(−1)V6,i[k+p]

(
V ′

10,i[k] − 3
2

)
+ (T ′ × 1.5 + (T6 − T ′) × 1).

The issue is now to find the p that maximizes this sum, this is the same
as computing the maximum of the crosscorrelation of two sequences of
length T6. We can do that efficiently using a fast Fourier transform as
explained in [1, pages 306-312]. The final complexity for computing this
sum will be in T6 log2(T6).

Thus, the total complexity of this state will be 4T6 log2(T6) ≈ 234.

We now compute the false alarm and the non detection probabilities. First of
all we consider as the bias threshold S = 0.55 × η = 2−12.86. Let n be the
length of the sequences used and i be the number of sequences. The false alarm
probability for i sequences is the probability that, while trying wrong initial
states of Registers 6 and 10 (which would generate random sequences) we find a
bias higher than 2−12.86 or lower than −2−12.86 for all the i Wj . Using Chernoff’s
bound on the tail of the binomial distribution we get:

Pfa4(S) = (Pfa1(S))i ≤ (2e−2S2n)i,

where Pfa1 is the false alarm probability for one sequence. In our case n = 228.29

and i = 4, so Pfa4 = 2−64.29. The number of initial states that will pass the
test without being the correct one will be (256 − 1) × 2−64.29 = 2−8.29. The
non detection probability is the probability that while trying the correct initial
states of Registers 6 and 10 we find a bias between −2−12.86 and 2−12.86. For
one sequence it will be:

Pnd1(S) ≤ 2e−2(η−S)2n,

So the probability of non detection for i sequences, that is, the probability of
not detecting the threshold at one of the i Wj will be:

Pnd4(S) = 1 − (1 − Pnd1(S))i.
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It is used only for the correct initial states. As we can see, it increases with i,
the number of used sequences. In our case, i = 4, leading to Pnd4(S) = 2−9.43.

The time complexity is, finally

2L10−1 × [233.69 + 4T6 log2 4T6

]
+ T6 × 22 = 264.85 steps.

The required number of keystream bits is

228.29 × T1 + T3T7 + T4T5 = 250.29 + 248.1 + 251 < 252.

The memory used is
230 + 229 = 230.58,

where 230 is the size of the four V10,i vectors and 229 of the V6,i vectors.

4 Distinguishing Attack against Achterbahn-128

Now, we present a distinguishing attack against the 128-bit version of Achter-
bahn which also recovers the initial states of two registers.

We consider the following approximation of the combining function F :

�(x0, . . . , x12) = x0 + x1 + x2 + x3 + x4 + x7 + x8 + x9 + x10.

Then, for �(t) = x0(t)+x1(t)+x2(t)+x3(t)+x4(t)+x7(t)+x8(t)+x9(t)+x10(t),
we have Pr[S(t) = �(t)] = 1

2 (1 + 2−3).

Parity-checks. If we build a parity check as follows:

���(t) =
∑

τ∈〈T3,8,T1,10,T2,9〉
�(t + τ),

the terms containing the sequences x1, x2, x3, x8, x9, x10 will disappear from
���(t), so ���(t) depends exclusively on the sequences x0, x4 and x7:

���(t) =
∑

τ∈〈T3,8,T1,10,T2,9〉
x0(t + τ) + x4(t + τ) + x7(t + τ) = σ0(t) + σ4(t) +σ7(t),

where σ0(t), σ4(t) and σ7(t) are the parity-checks computed on the sequences
generated by Registers 0, 4 and 7. Adding eight times the approximation has
the effect of multiplying the bias eight times, so the bias of

σ(t) =
∑

τ∈〈T3,8,T1,10,T2,9〉
S(t + τ),
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where (S(t))t≥0 is the keystream, is 2−8×3. So:

Pr[σ(t) + σ0(t) + σ4(t) + σ7(t) = 1] =
1
2
(1 − ε8).

This means that we need 23×8×2 × 2× (74− 3)× ln(2) = 254.63 values of σ(t) +
σ0(t) + σ4(t) + σ7(t) to detect this bias, when we perform an exhaustive search
on Registers 0, 4 and 7.

We use the previously proposed algorithm for the attack of Achterbahn-128
for computing the sum σ(t) + σ0(t) + σ4(t) + σ7(t) over all values of t. This
algorithm has a lower complexity than an exhaustive search for the initial states
of the Registers 0, 4 and 7 simultaneously. We use it considering Register 0 and
Register 4 together.

The complexity is going to be, finally

2L0−1 × 2L4−1 × [254.63 × (24 + 24.7
)

+ T7 log T7

]
+ T7 × 23 = 2104 steps.

The required keystream length is:

254.63 + T1,10 + T2,9 + T3,8 = 254.63 + 253 + 253 + 253 < 256 bits.

The memory used is
232 + 228 = 232.08,

where 232 is the size of the V0−4 vector and 228 of the V7 vector.

5 Recovering the Key

As explained in the previous attacks [11] and introduced in [9], we can recover
the key with a variant of a meet-in-the-middle attack once we have found the
initial state of some registers. The time complexity of this part of the attack is
smaller than the one of the previously described distinguishing attack that we
need to get the initial states of several registers. So the complexity of the total
key-recovery attack is the same one as for the distinguishing attacks.

6 Conclusion

We have proposed an attack against Achterbahn-80 in 264.85 steps where fewer
than 252 bits are needed. That is 264.85 boolean operations, which makes it much
more efficient than a brute force attack. The memory needed for this attack is
230.58. An attack against Achterbahn-128 is also proposed in 2104 steps where
fewer than 256 bits of keystream are required. The memory needed is 232. After
that we can recover the key of Achterbahn-80 with a complexity of 240 in time
and 241 in memory (the time complexity is less than for the distinguishing part
of the attack). For Achterbahn-128 we can recover the key with a complexity
of 273 in time and 248 in memory. After those attacks, the authors proposed a
new keystream limitation for both Achterbahn-128/80 [7]. This new limitation
is 244. With this limitation the known attacks are not applicable.
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