
Practical Analysis of Reduced-Round Keccak ?

Maŕıa Naya-Plasencia1,3,??, Andrea Röck2,? ? ?, and Willi Meier1,†

1 FHNW, Windisch, Switzerland
2 Aalto University School of Science, Finland

3 University of Versailles, France

Abstract. Keccak is a finalist of the SHA-3 competition. In this pa-
per we propose a practical distinguisher on 4 rounds of the hash function
with the submission parameters. Recently, the designers of Keccak pub-
lished several challenges on reduced versions of the hash function. With
regard to this, we propose a preimage attack on 2 rounds, a collision
attack on 2 rounds and a near collision on 3 rounds of bKeccakc224 and
bKeccakc256. These are the first practical cryptanalysis results on re-
duced rounds of the hash function scenario. All of our results have been
implemented.

Keywords. hash function, Keccak, practical cryptanalysis, SHA-3

1 Introduction

Cryptographic hash functions are one of the three main branches of symmet-
ric cryptography. They are deterministic functions, H, that given an input or
message M of an arbitrary length, return a short pseudo-random value of fixed
length ` that must verify certain properties. This value must be easy to com-
pute and is typically called digest or hash value, h. Hash functions have many
important applications like authentication, integrity check of executables, dig-
ital signatures, etc. A hash function can normally be defined by an iterative
construction and a compression function.

The digest should verify certain properties so that the hash function can be
considered secure. The classical security requirements of a hash function are:

1. Collision resistance: finding two message M1 and M2 so that H(M1) =
H(M2) must be “hard”. The generic collision attack, that applies to all
hash functions, requires 2`/2 calls to the compression function.

? This work was partially supported by the European Commission through the ICT
programme under contract ICT-2007-216676 ECRYPT II.

?? Supported by the National Competence Center in Research on Mobile Information
and Communication Systems (NCCR-MICS), a center of the Swiss National Science
Foundation under grant number 5005-67322 and Partially supported by the French
Agence Nationale de la Recherche through the SAPHIR2 project under Contract
ANR-08-VERS-014.

? ? ? Supported by the Academy of Finland under project 122736.
† Supported by GEBERT RÜF STIFTUNG, project no. GRS-069/07

2. Second preimage resistance: Given a message M1 and its hash value h =
H(M1), finding another message M2 so that H(M2) = h must be “hard”.
The generic second preimage attack requires 2` calls to the compression
function.

3. Preimage resistance: Given a hash value h, finding a message M1 so that
H(M1) = h must be “hard”. The generic preimage attack requires 2` calls
to the compression function.

Defining what “hard” means in the previous concepts is a difficult task. In a
strict way, we can ask that building a collision or a (second) preimage on the hash
function must require at least as many calls to the compression function as the
generic attacks. Beside these properties, a hash function must verify some other
conditions, like for example generating hash values that are random-looking.

Recently, a big number of cryptanalysis results on hash functions have ap-
peared, including the ones on the standards MD5 [13] and SHA-1 [12]. The con-
fidence in the standard SHA-2 has then been undermined due to its resemblance
with SHA-1. Because of this, the American National Institute of Standards and
Technology (NIST) decided to launch in 2008 a competition to find a new hash
function standard, SHA-3. From the 64 initial submissions, two rounds and three
years later, only five candidates remain in the final round of this competition.
One of them is Keccak.

Keccak is a sponge based hash function. The main cryptanalytic results
published so far on Keccak are results on building blocks, that is, on the per-
mutation involved in Keccak and not on the hash function. In [6], a zero-sum
distinguisher on all 24 rounds of the permutation is proposed. This distinguisher
has a complexity of 21590.

On the hash function setting, which is arguably a more interesting one, the
only known results are marginally better than generic preimage attack for 6, 7
and 8 rounds [1] for the 512 bit version, having complexities of 2506, 2507 and
2511.5 respectively. In [8], a practical preimage attack is proposed on three rounds
of a modified Keccak, using different parameters than the recommended ones,
like for example, a hash size of 1024 bits, which weakens considerably the hash
function.

We believe that due to the lack of results on the hash setting of reduced
rounds of the hash function, the authors of Keccak proposed a number of chal-
lenges for finding practical collisions and (second) preimages on reduced round
versions of Keccak. Inspired by these challenges, we decided to study in detail
the hash function setting, trying to find practical results. We present in this pa-
per a distinguisher on the recommended hash functions bKeccak[1088,512]c256
and bKeccak[1152,448]c224 when reduced to 4 rounds, a second preimage on
two rounds, a collision on 2 rounds and a near collision on 3 rounds. These are
the first practical results of cryptanalysis of the Keccak hash function setting
where all the parameters but the number of rounds remain unchanged. Note
that the challenges proposed by the Keccak designers have smaller hash values
(80 bits for a preimage, 160 bit for a collision) and a smaller capacity, c = 160,
and are thus easier instances of the preimage and collision problem.

In [11], practical attacks on the compression functions of other hash func-
tions were presented, but Keccak was not one of them. Our analysis methods
are based on different techniques, and propose a deep study of reduced-round
Keccak and its resistance to attacks on the hash function scenario, which are
stronger results than compression function ones. For the sake of simplicity, in

Table 1. Best known cryptanalysis results on the Keccak hash function. We omit the
analysis on the building blocks and detail all the results on the hash function setting.

Rounds Version Time Memory Generic Type Reference

6/7/8 512 2506/2507/2511.5 − 2512 Second Preimage Attack [1]

4 256/224 225 − 236 Hash Function Distinguisher Section 3

3 256/224 225 − 264 Hash Function Near-Collision Section 4

2 256/224 233 − 2128 Hash Function Collision Section 5

2 256/224 233 229 2256 Hash Function (Second) Preimage Section 6

this paper we present the results on the recommended hash function with 256
bits of output, to which we refer at as Keccak during the analysis. The equiv-
alent results for the 224 bit version are similar to them.

The paper is organized as follows: In Section 2, a description of Keccak and
the notations that we use through the paper are given. Section 3 describes a dif-
ferential distinguisher on 4 rounds of the recommended hash function Keccak-
256, that is extended in Section 4 to a near-collision attack on 3 rounds. Section 5
presents a hash function collision on 2 rounds and Section 6 describes how to
build a hash function (second) preimage for two rounds.

2 Keccak Description and Notations

Keccak is a family of sponge hash functions [4]. A sponge hash function absorbs
a message block of r bits into its internal state and subsequently applies an
internal permutation to the state. This step is repeated until the all blocks of
the message to hash have been treated. Next, in the squeezing phase, r bits
are generated from the state before each new permutation application, until the
number of the wanted output bits has been generated. In the following we will
describe the recommended Keccak versions for the SHA-3 competition, which
are the ones that we have considered in our analysis. All the versions use the
same internal permutation: Keccak−f [1600].

The full Keccak−f [1600] state is composed of 1600 bits, organized in 64
slices of 5 × 5 bits. The position of a bit in a slice can be given either by its x
and y value or by its bit-number. The two notations are given in Table 2. The
z coordinate gives the number of the slice 0 ≤ z ≤ 63. Most of the steps in the
round function of Keccak are invariant to a translation in z direction. The only
part non-invariant is the round constant addition ι.

Table 2. Bit notation in a slice.

x = 3 x = 4 x = 0 x = 1 x = 2

y = 2 bit 1 bit 2 bit 3 bit 4 bit 5

y = 1 bit 6 bit 7 bit 8 bit 9 bit 10

y = 0 bit 11 bit 12 bit 13 bit 14 bit 15

y = 4 bit 16 bit 17 bit 18 bit 19 bit 20

y = 3 bit 21 bit 22 bit 23 bit 24 bit 25

The bits in the state can be also numbered from 0 to 1599. The conversion
from x, y, z coordinate to global state bit position is done as follows:

global pos = 64(5y + x) + z.

The inner permutation of the full Keccak hash function consists of 24 it-
erations of the round function. The round function itself is composed of five
steps:

1. θ: Xor to each bit the XOR of two columns (column = same x value, y from
0 to 4). The first column is in the same slice as the bit and the second column
is in the slice before the bit.

2. ρ: Translate a bit in z direction.
3. π: Permute the bits within a slice.
4. χ: Apply a 5× 5 S-box on one row (row = same y value, x from 0 to 4).
5. ι: Addition of round constant.

Each of the versions (224, 256, 384 and 512 output bits) has a different block
message size r. The capacity in a sponge construction is the size of the internal
state minus the size of a message block. Consequently, they all have a different
capacity c:

– For an output of 224 bits, r = 1152 and c = 448.
– For an output of 256 bits, r = 1088 and c = 512.
– For an output of 384 bits, r = 832 and c = 768.
– For an output of 512 bits, r = 576 and c = 1024.

For more details we refer to [3]. As previously said, in this paper we analyze the
256 bit version, that we will denote simply by Keccak in the following. All of
our results can be directly extended to the 224 bit-output version.

3 Differential Distinguisher

In this section we first present an efficient way of searching low weight differential
paths. This method was used to find the differential paths that we apply for the
distinguisher on 4 rounds, the collision on 2 rounds and the near collision on 3
rounds. For the distinguisher we use in addition the concept of free bits as was
used in [7].

3.1 Searching Differential Paths

As the authors define in [2], a state-difference is a kernel if it is invariant to the
function θ, e.g. in each column we have a difference in zero or in an even number
of bits. If we have a column where we have a difference in an odd number of
bits, θ will spread this difference to 10 bits. Thus, for a low weight differential
path we would like the state-differences to stay a kernel as long as possible. The
designers of Keccak show in [2] that it is not possible to construct low weight
differentials that are a kernel for three states in a row, however two states in a
row is possible, though they are not given in the documentations. We will denote
the two kernels in a row a double kernel.

For our search we use the special property of χ that every 1-bit difference
in a row constructed before χ will produce the same 1-bit difference after χ
with probability 2−2. Thus such a 1-bit difference will be invariant to the only
non-linear part with probability 2−2. If in addition we have a kernel, i.e. the
difference is invariant to θ, we can concentrate on the functions ρ and π to find
a double kernel.

For finding a double kernel we use the following procedure. At first, we fix in
how many slices we want a difference in the first state. An example for a kernel
in 3 slices is given in Figure 1. We start by choosing one bit in slice z = 0. The
following algorithm will be repeated for all bits in slice z = 0. From our chosen
bit we compute the position after one application of ρ and π. For this new bit
position we check all bits in the same column and compute its position back by
applying π−1 and ρ−1. We once again check all possible bits in the same column
and compute their position after applying ρ and π. We continue this procedure
until we have touched the wanted number of slices. We will find a double kernel
if after the last step we are again at the original slice at the right column.

This basic method allows us to find all double kernels which have k active
slices in each of the two kernels with a complexity of 25 ∗ 42k−1. Every solution
will be found 2 ∗ k times, since every point of the first kernel can be a starting
point.

By this method we can find very fast all possible differential paths that
are a kernel for two states in a row and have low hamming weight. We can
use this method for example to find a differential path over 4 rounds which
has a probability of 2−142 and a double-kernel on 3 slices in the first two non-
linear layers, and a differential path over 5 rounds with a probability of 2−510

by computing one step back and two steps forwards from a double-kernel on 6
slices. However, the objective of our paper is not to find the best differential
path. We used the method to find suitable differential paths for our analysis.

3.2 Conditional Differentials and Free Bits

In [7], the concept of conditional differentials applied to NLFSR-based systems
is introduced. The main idea is to consider a differential path with a good proba-
bility and try to control the first rounds of the path by imposing some conditions

Fig. 1. Successful search of a double kernel on 3 slices.

on the values of the internal state, so that the path with these conditions is ver-
ified with probability 1. For detecting a bias after the biggest number of rounds
possible, the concept of free bits is introduced. In [10,5], some related work can
be found.

The free bits [7] are the input bits such that, once we have found a pair of inputs
that satisfies the differential path for the first rounds and so the corresponding
needed conditions, can take any values without contradicting the conditions
needed to satisfy the differential path. This means that once we have found a
pair of inputs that follows the differential characteristic, we can change these bits
and the new pairs will still follow the characteristic for these these first rounds.

3.3 Best Differential Paths

We have tested all low weight differential paths starting with a double kernel and
checked which of them have an input difference that fits into the message part of
the hash function. This is needed in order to perform a distinguisher in the hash
function, as the difference will be introduced by the last round message block.
Each path has a probability of being verified, i.e. the probability a random pair
following the characteristic, that is given by the χ transformations behaving as
needed. The highest probability of 2−24 was achieved by two paths, both having
characteristic of 6-6-6 active S-boxes. In both cases, the difference of the first
two rounds are a kernel and the first difference fits into a 1088 bit message. We
chose the one which had less active bits one round later. This path stays valid
for any translation in the z direction.

The best path: Let us define the following differences:

∆1 : x = 0, y = 0, bit = 13, z = 0
x = 0, y = 1, bit = 8, z = 0
x = 2, y = 1, bit = 10, z = 30
x = 2, y = 2, bit = 5, z = 30
x = 1, y = 0, bit = 14, z = 63
x = 1, y = 2, bit = 4, z = 63

∆2 : x = 0, y = 0, bit = 13, z = 0
x = 0, y = 2, bit = 3, z = 0
x = 2, y = 0, bit = 15, z = 9
x = 2, y = 3, bit = 25, z = 9
x = 1, y = 2, bit = 4, z = 36
x = 1, y = 3, bit = 24, z = 36

∆3 : x = 0, y = 0, bit = 13, z = 0
x = 2, y = 1, bit = 10, z = 3
x = 0, y = 4, bit = 18, z = 7
x = 3, y = 1, bit = 6, z = 17
x = 3, y = 3, bit = 21, z = 24
x = 2, y = 3, bit = 25, z = 46

Then the path is the following (where we ignore ι since it is not important for
the differences):

∆1

round︷ ︸︸ ︷
θ,ρ,π,−−−→ ∆2

χ−→ ∆2

round︷ ︸︸ ︷
θ,ρ,π,−−−→ ∆3

χ−→ ∆3

3.4 Distinguisher on 4 Rounds of the Hash Function

Let H(4) be the Keccak-256 hash function reduced to 4 rounds and fR one
round of the Keccak−f [1600] function. For a partial message M , we define by
XM the internal state of Keccak after absorbing M .

In a first off-line step we find a padded message M ||m such that (XM ⊕
m,XM ⊕ m ⊕ ∆1) will follow the differential path described in the previous
section, i.e.

f2
R(XM ⊕m)⊕ f2

R(XM ⊕m⊕∆1) = ∆3 .

Such a message can be found by trying 224 random messages. We recall that m
and m⊕∆1 are the last message blocks including the correct padding.

Next we check how many free bits we have for our differential path within
the range of the r message bits. We recall that by a free bit we mean a bit that
we can change in m, so that the differential path is still verified. We find the
following results:

– For the differential path described in Section 3.3, there are 81 free bits
within the r = 1088 bits of the message block. They are listed in Ap-
pendix A.1.

We can now define the vectors pace A ⊂ Fr
2 containing all binary vectors of size r

which are zero at all non-free bit positions, i.e. A has dimension 81. This means,
for any (XM ⊕ m,XM ⊕ m ⊕ ∆1) which follows the differential path and any
difference α ∈ A, the pair of states (XM ⊕m⊕ α, XM ⊕m⊕∆1 ⊕ α) will also
follow the differential path.

For our distinguisher we have to define what we mean by a bias. Let {0r} be
the set containing the all-zero vector of size r bits.

Definition 1. Let {α1, . . . , αN} be a set of N distinct differences, αi ∈ A\{0r},
and ∆ a single difference. We denote by M the initial message with a length of
some message blocks, and m be the final message part, such that m including
the final padding fits into one message block. The concatenation of M and m is
denoted as M‖m. Let H(M‖m)i define the ith bit of the hash of M‖m computed
using the function H. Then we define the bias of the ith bit as

εHi =
#{1 ≤ j ≤ N : H

(
M‖(m⊕ αj)

)
i
⊕H

(
M‖(m⊕ αj ⊕∆)

)
i
= 1}

N
− 1

2

We will use the following property for our distinguisher:

Distinguishing property: For any M such that (XM ⊕ m,XM ⊕ m ⊕ ∆1) fol-
lows the differential path described in Section 3.3, any set of distinct differences
{α1, . . . , αN}, αj ∈ A \ {0r}, ∆ = ∆1 and H = H(4) being the 4 round version
of the Keccak hash function, there are 18 positions i in the hash where the
absolute value of the bias is |εH(4)

i | = 2−1 for N ≥ 1. The exact positions and
their bias is listed in Appendix A.2

3.5 Implementation of the Distinguisher

In a first off-line step we search a message M ||m such that (XM ⊕m,XM ⊕m⊕
∆1) follows the differential path. We have to try 224 messages and for each of
them compute first XM by absorbing the message blocks in M and then two
rounds of the round-function on XM ⊕m and on XM ⊕m⊕∆1, to check if the
differential path has been verified. Thus this step costs 225 in time.

The next step is the online step, where we will determine if H is a random
function or the 4 round version of Keccak. We choose randomly a set of distinct
differences {α1, . . . , αN}, αi ∈ A \ {0r}, and test the bias at the 18 predefined
positions for ∆1. In the case of Keccak the bias will be correct for any N ≥ 1, in
the case of a random oracle this will happen with a probability of 2−18N . Thus we
can distinguish the 4-round version of Keccak with an off-line precomputation
complexity of 225 and an on-line complexity of 2N where N ≥ 1.

Remark 1. The previous test has a complexity of 225 + 2N and searches in a
precomputation phase for a suitable message M . Without this precomputation
phase, we can still have a distinguisher with a cost of 225N where we need N ≥ 2.
For this we define a test T , in the following way:

– A message M passes the test T if for ∆1 and a set of distinct differences
{α1, . . . , αN}, αi ∈ A\{0r}, its bias has the correct value in the 18 positions
defined in the previous section.

In the random case, a message M passes the test with probability 2−18N , in
the case of a 4-round Keccak and a message where XM follows the differential
path, this happens with probability 1. We will find such an M with probability
2−24, thus for the 4-round Keccak the total probability of finding an M passing
the test is 2−24 + 2−18N . For N ≥ 2 the first term is dominating and by testing
224 messages we are able to distinguish the 4-round Keccak from a random
oracle. The total time complexity is 224 ∗ 2N .

4 Near-Collisions for 3 Rounds on the 256-bit Hash
Function

In this section we show how to build near-collisions on the 3-round hash function
by using the previous path. As we said before, for verifying the first two rounds
and having 6 bit-differences after them, there are 24 conditions that need to
be verified. This will happen with a probability of 2−24. Thus, when inserting
224 well padded message blocks from a fixed and chosen chaining value we can
assume to find one that follows the differential path for two rounds.

We now study what happens one round later. For this we apply the linear
part, θ, ρ and π, on the difference ∆3. We call this new difference the state S.

The output of the hash function is given by the lanes of 64 bits at positions
y = 0 and x = 0, 1, 2, 3. This means that if we have a difference in the hash
value, we must have at least one difference with y = 0 in the corresponding

slice before the final χ transformation. We have checked in state S which slices
have differences in the middle lines, so in y = 0. This happens for 13 slices, and
each of them contains just one difference in y = 0. Amongst them, four slices
contain a difference in x = 4, which does not belong to the hash output. If such
a difference passes χ in such a way that the 1-bit output difference equals the
1-bit input difference, we won’t have a difference in the digest. If not, the 1-bit
input difference might generate up to two bits of differences in the hash. The
remaining 13 − 4 = 9 slices have differences that will produce, each, at least a
1-bit difference in the hash value, so it will always have at least 9 differences after
two rounds. Besides that, 6 amongst these differences can generate one more bit
of difference, and 3 can generate up to two more difference bits, depending on χ.

At this stage, we can do two things:

1. Not increasing the complexity, and finding near-collisions for the bits that
we know for sure won’t have a difference. This number of bits is 256 −
4 ∗ 2 − 6 ∗ 2 − 3 ∗ 3 = 227. In this case, we can build near collisions of
227 bits with a complexity of 224, while the generic complexity would be(

2256

(256
227)

)1/2

= 264. This has been verified experimentally, and an example is

given in Appendix B.
2. Try to control the additional conditions and just have the inevitable 9 dif-

ferences in the hash value. As we saw before, this means that we have to
control 29− 9 = 20 additional bit conditions. These are the conditions given
by χ so that it does not spread the already existing differences. The total
complexity for having a near-collision on 256− 9 = 247 bits is 224+20 = 244,

while the generic complexity is
(

2256

(256
247)

)1/2

= 2101.

5 Hash Function Collisions on 2 Rounds

To find a collision on the hash function by means of a differential path we need
to find a path that fits into the message and has no difference in the hash. This
is not possible by a double kernel on three slices, however we found a suitable
path considering double kernels on four slices.

∆1 : x = 1, y = 2, bit = 4, z = 0
x = 1, y = 3, bit = 24, z = 0
x = 0, y = 2, bit = 3, z = 4
x = 0, y = 3, bit = 23, z = 4
x = 4, y = 0, bit = 12, z = 35
x = 4, y = 2, bit = 2, z = 35
x = 1, y = 0, bit = 14, z = 61
x = 1, y = 2, bit = 4, z = 61

∆2 : x = 2, y = 1, bit = 10, z = 7
x = 2, y = 3, bit = 25, z = 7
x = 2, y = 3, bit = 25, z = 10
x = 2, y = 4, bit = 20, z = 10
x = 3, y = 1, bit = 6, z = 45
x = 3, y = 4, bit = 16, z = 45
x = 0, y = 2, bit = 3, z = 62
x = 0, y = 3, bit = 23, z = 62

∆3 : x = 2, y = 1, bit = 10, z = 1
x = 4, y = 1, bit = 7, z = 7
x = 1, y = 2, bit = 4, z = 13
x = 3, y = 3, bit = 21, z = 22
x = 3, y = 3, bit = 21, z = 25
x = 1, y = 4, bit = 19, z = 36
x = 4, y = 3, bit = 22, z = 37
x = 3, y = 4, bit = 16, z = 39

We will use the following path:

∆1

round︷ ︸︸ ︷
θ,ρ,π,−−−→ ∆2

χ−→ ∆2

round︷ ︸︸ ︷
θ,ρ,π,−−−→ ∆3

χ−→ ∆3

The differences ∆2 and ∆3 have each eight rows with a 1-bit difference in the
input and in the output of χ. This lead to a total probability of 2−32 of following
the differential characteristic. The difference in ∆1 lies in the message block and
difference in ∆3 lies outside of the hash value. If we try random messages pairs
where we introduce ∆1 in the last message block, we have a probability of 2−32

that the last two rounds follows our differential path, which ensures that we have
a collision in the final hash. Therefore, the complexity of this 2-round collision
is 233. In practice, we find a collision much faster, after around 213 steps. We
give an example of such a collision in Appendix C.

6 Practical (Second) Preimages on 2 Rounds of the
256-bit Hash Function

In this section we present a (second) preimage attack for a reduced version with
two rounds of Keccak . The preimage works with a complexity of about 233 in
time and 229 in memory. It also applies to several of the challenges with other
parameters, but we present here the detailed case of 2 rounds of the recommended
version for SHA-3. An example for a preimage can be found in Appendix D.

6.1 Main Scheme

Figure 2 gives a representation of the (second) preimage attack on 2 rounds. In
it, we can see the slices at different states. In each slice, the square represents
a 64 bit lane. The white lanes are known and the colored ones are not. For the
sake of simplicity, we will omit the ι transformation in the explanation, as it
does not affect the procedure of the attack, but it must be taken into account
when implementing the attack.

Fig. 2. Diagram of the 2-round preimage attack. Each square represents a 64 bit lane.
Each white lane is a lane known and fixed, each colored one, a not-yet-fixed lane.

We are given a hash value, which is 4 out of the 5 white lanes in the most
right slice #4, in Fig. 2, that represents the final state after the permutation.
The fifth lane is not known but we can choose a random value for it and fix it.
What we want to find now is, given a chaining value, for example the initial one,
a message block that produces the values of these five lanes, and so the initial
given hash value corresponding to 4 out of these 5 lanes.

In Fig. 2, the gray lanes show into which lanes of the chaining value the
message is xored. The lanes marked with a zero are the lanes of the message
that we are going to fix to zero. The lanes marked with (a0, a1, b0, b1, c0, c1, d0,
d1, e0, e1) are the parts of the message that we do not fix until the end of the
attack. The only condition we ask from them is that: a0 = a1; . . . ; e0 = e1. In a
generic way we will say x0 = x1. These conditions are asked for so that the first
operation θ will not change the unknown lanes. From the initial state #1 we can
then compute the known lanes in #2 after θ, ρ and π, as well as the positions of
the unknown lanes. Figure 3 shows the movement of the bits in detail. Imposing
the previous conditions we still have 5 ∗ 64 degrees of freedom for the message,
which is the same as the number of bits in which we want to collide in the end.
We can then expect to find one solution.

In the backward direction, we can invert from #4 the known white line of
five lanes in the final state with χ−1. Then, we can apply the inverse of π and
of ρ and obtain the values and positions of the 5 known lanes in #3.

Fig. 3. Shows how the bits a0, . . . , e1 get moved by θ, ρ, π. The number k under xi

means that xi at slice z on the left side gets moved to slice z + k (mod 64) after the
transformation.

Then, the issue is to find the values of the ten 64-bit words (a0, a1, b0, b1, c0, c1,
d0, d1, e0, e1) in #2 that make possible the transition by the operations χ and
θ, from the state #2, that we have obtained computing forward, to the state
#3, that we have obtained computing backward. For this we are going to start
by finding the bits that verify the relations for a few slices. The idea is, for
example, to consider first groups of three slices where we guess all the involved
bits of a0, . . . , e1, and next we can do a sieving by just keeping the guesses ones
that produce by χ and θ the values of the 5 × 2 = 10 known bits from #3
in the middle and last slices of the group of three slices. This is possible as for
computing the output of θ in a specific slice, we need to know this same slice and
the previous one in the input state. We say that one bit (from x0 for example)
is repeated in a group of slices when the bit from x1, corresponding to the same
slice in the initial difference, also appears in this group of slices.

6.2 Finding Partial Solutions

Partial solutions for 3 slices: We start by finding partial solutions for groups of
three slices as previously described. In three slices there are 3× 10 bit-variables
from a0, . . . , e1. If we consider the conditions x0 = x1 there are two variables
that are repeated, so we have to guess in total 30 − 2 = 28 variables. The two
repeated values come from the values of ρ for d0 and d1, as there is a translation
of 1 in between them. Out of the three bits of d0 intervening in three consecutive
slices, 2 of them will be equal to 2 of the bits of d1 intervening in these same
slices. For each guess we check if the 10 bits already fixed computing backwards
on the two last slices collide, which will happen with a probability of 2−10. In
total, for each group of three slices that we try to find partial solutions for, we
obtain 228−10 = 218 solutions. We will repeat this for 16 consecutive groups of 3
slices, leaving 16 out. By using the methods described in Section 6.4, the time

complexity of building the list is given by the size of the list. Thus this step has
a time and memory complexity of 16 ∗ 218 = 222.

Partial solutions for 6 slices: We are going to merge here each two consecutive
groups of three slices. We have 218∗2 possibilities, but, because of the conditions
x0 = x1, a group of three slices has 7 repeated variables regarding a consecutive
group. Also, when we merge two groups, we can check if we obtain the wanted
values on five more bits from the output (from the first slice of the second group).
This way we obtain 218∗2−7−5 = 224 solutions for each one of the 8 groups of 6
slices. The bottleneck of this step is the number of solutions, 8×224 in both time
and memory, as the merge of two lists can be done using the instant matching
algorithm described in [9] by using the methods in 6.4. This algorithm can also be
applied in the next steps, so in all the cases, the bottleneck will be the number of
solutions obtained. This step has a time and memory complexity of 8∗224 = 227.

Partial solutions for 12 slices: The same way, we merge here each two consecutive
groups of 6 slices for generating 4 groups of 12 slices. In this case the number
of repeated bits in the merge is 16, so the total number of solutions that we
will obtain is 224∗2−16−5 = 227. This step has a time and memory complexity of
4 ∗ 227 = 229.

Partial solutions for 24 slices: We merge here each two consecutive groups of 12
slices for generating 2 groups of 24 slices. In this case the number of repeated
bits in the merge is 22, so the total number of solutions that we will obtain is
227∗2−22−5 = 227. We have a time and memory complexity of 2 ∗ 227 = 228.

Partial solutions for 48 slices: Finally, we merge the 2 groups of 24 slices, for
obtaining one group of solutions for 48 consecutive slices. In this case, the number
of repeated bits due to conditions is also 22, so we obtain 227 solutions. In these
48 slices we have determined 480 bit-variables from a0, . . . , e1, and there are a
total of

2 ∗ 16 + 7 ∗ 8 + 16 ∗ 4 + 22 ∗ 2 + 22 = 218

repeated variables amongst them. This means that there are 480− 218 ∗ 2 = 44
bit-variables not repeated, that are then repeated in the 16 slices that we have
yet to treat. This step has a time and memory complexity of 227.

Partial solutions for 16 slices: For finding solutions for 16 slices we first find
solutions for the 12 rightmost slices the same way as before, and obtaining 227

partial solutions. Let us remark here that in 12 slices there are 120 bit-variables
fixed and 38 out of them are repeated ones. This means that there are 44 variables
not repeated that must have their corresponding bit-variable in the 48-slice group
or in the remaining 4-slice group.

Next, we can obtain solutions for the 4 remaining and consecutive slices,
where we have 40 bit-variables, and 5 of them are repeated. Additionally, we
have to collide on 5× 3 bits that we can compute of the output. This leaves us

with 240−5−15 = 220 solutions. As there are 40 bit-variables and 5 are repeated,
there are 40− 5 ∗ 2 = 30 variables not repeated.

We know that in the 48-slice group, there are 44 bit-variables that must be
on either the independent group of 12 or on the groups of 4 slices. This means
that out of the 44 + 30 = 74 not-repeated variables in these last two groups,
44 will correspond to the ones in the 48-slices group. Then, of the 30 remaining
variables, half must be in the groups of 12, and 15 must be in the group of 4.
This can also be seen as the following system of equations, where A represents
the number of common bits between the 48-slice group and the 4-slice group, B
is the number of common bits between the 48-slice group and the 12-slice group,
and C is the number of common bits between the 4-slice group and the 12-slice
group. From the previous numbers we know that A + B = 44, B + C = 44
and A + C = 30. Then we have A = 15, B = 29 and C = 15. The number of
additional conditions determined by the repeated bits that we have for merging
the group of 4 and the group of 12 slices is then C = 15.

We can then merge the group of 12 slices and the one of 4 obtaining

227+20−15−5 = 227 solutions.

This step has a time complexity of 227+220+227 ≈ 228 and a memory complexity
of 227.

6.3 Matching 48 Slices with 16 Slices:

Now, we can match the just obtained group of 16 slices with the one of 48. As
we said, they have 44 variables in common where they have to collide, and there
are 2 ∗ 5 bits of the output that will also be determined. This leaves us with

2272272−4422∗5 = 1 solution,

as expected. This step has a time complexity defined by the size of one input
list and is thus 227. During the attack we keep only the latest generated lists
in the memory, thus the the memory complexity is bounded by 229. The time
complexity is given by 222 +227 +229 +228 +227 +228 +227 ≈ 231 Thus, we can
obtain a (second) preimage with a complexity of 231 in time and 229 in memory.

6.4 Implementation Remarks

Two methods can help in an efficient implementation of the attack. Let us assume
we want to merge the block from slice i to j with the block from slice j +1 to k.
We first precompute a list containing all solutions for merging slice j and slice
j + 1. We have 10 bits in each of the two slices, 1 repeated bit and 5 conditions
from the output, thus we have in total 214 solutions that we sort by the 210

values in slice j. The costs of building this list is negligible in comparison to the
remaining time complexities. Next, for each solution in the first block (i to j)
we compute the values of the bits that will repeat in the second block. We will

sort the solution in this first block by the value of the slice in j and the values
of the repeated bits. We do the same thing for the second block (j + 1 to k) and
sort it by the value of slice j + 1 and the values of the repeated bits. Now we
can easily merge the two lists using the precomputed list of matches from slices
j to j + 1.

6.5 Dealing with the Padding

In Keccak, the message is not padded with the length, but with a simple
padding where to the last message block we append a 1, a number of 0’s and
another 1 so that it completes the final block. For us to obtain a valid message
block that fits into the last block, we need to have a 1 in the last position and
a zero in the previous one. We have then a probability of 2−2 of obtaining a
valid message. We can repeat the previous procedure for 4 different chaining
values, and expect one to give a valid padded last block. Thus we have a time
complexity of 233 of finding a (second) preimage with a correct padding.

7 Conclusion

In this paper, we have presented new results in several directions on the security
of Keccak: A distinguisher on 4 rounds, preimage and collision attacks on 2
rounds, and near collisions on 3 rounds. These results apply to the 256 and to the
224 bits versions. First, these results concern the reduced round hash function
rather than building blocks like the internal permutation or the compression
function as considered in previous work. Next all our results are practical and
have been implemented. The only known previous external cryptanalysis on
the reduced round hash function setting was a marginally better than generic
theoretical preimage attack. The number of rounds reached is far from the total,
and the results do not present a threat against the whole hash function, but
we believe they will contribute to a better understanding of the security of the
Keccak hash function.

References

1. Bernstein, D.J.: Second preimages for 6 (7? (8??)) rounds of Keccak? NIST mailing
list (2010), http://ehash.iaik.tugraz.at/uploads/6/65/NIST-mailing-list

Bernstein-Daemen.txt

2. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak refer-
ence. Submission to NIST (Round 3) (2011), http://keccak.noekeon.org/

Keccak-reference-3.0.pdf

3. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak SHA-3 sub-
mission. Submission to NIST (Round 3) (2011), http://keccak.noekeon.org/

Keccak-submission-3.pdf

4. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the indifferentiability of
the sponge construction. In: EUROCRYPT. Lecture Notes in Computer Science,
vol. 4965, pp. 181–197. Springer (2008)

5. Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Advances in Crypology:
CRYPTO 2004. Lecture Notes in Computer Science, vol. 3152, pp. 290–305.
Springer (2004)

6. Boura, C., Canteaut, A., Cannière, C.D.: Higher-order differential properties of
Keccak and Luffa. In: FSE. Lecture Notes in Computer Science, vol. 6733. Springer
(2011)

7. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanaly-
sis of NLFSR-based cryptosystems. In: ASIACRYPT 2010. Lecture Notes in Com-
puter Science, vol. 6477, pp. 130–145. Springer (2010)

8. Morawiecki, P., Srebrny, M.: A SAT-based preimage analysis of reduced KEC-
CAK hash functions. Cryptology ePrint Archive, Report 2010/285 (2010), http:
//eprint.iacr.org/2010/285.pdf

9. Naya-Plasencia, M.: How to Improve Rebound Attacks. In: Advances in Crypol-
ogy: CRYPTO 2011. Lecture Notes in Computer Science, vol. 6841, pp. 188–205.
Springer (2011)

10. Rechberger, C., Rijmen, V.: On authentication with hmac and non-random prop-
erties. In: Dietrich, S., Dhamija, R. (eds.) Financial Cryptography and Data Secu-
rity. Lecture Notes in Computer Science, vol. 4886, pp. 119–133. Springer Berlin /
Heidelberg (2007)

11. Turan, M.S., Uyan, E.: Near-collisions for the reduced round versions of some
second round SHA-3 compression functions using hill climbing. In: INDOCRYPT.
Lecture Notes in Computer Science, vol. 6498, pp. 131–143. Springer (2010)

12. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: CRYPTO.
Lecture Notes in Computer Science, vol. 3621, pp. 17–36. Springer (2005)

13. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: EUROCRYPT.
Lecture Notes in Computer Science, vol. 3494, pp. 19–35. Springer (2005)

A Information for the Distinguisher

A.1 Free Bits Which are in the 1088 Bit Message

In Table 3 we listed all the free bits from Section 3.

A.2 Bits in the Hash Output With a Bias

In the following, we give the list of bits in the hash with a bias of absolute value
2−1. The numbering corresponds to the bit position in the 256-bit hash:

– For all i ∈ {22, 119, 126, 128, 138, 169, 205} we have εH
(4)

i = 2−1.
– For all i ∈ {56, 63, 98, 127, 149, 161, 162, 176, 195, 232, 252} we have εH

(4)

i =
−2−1.

B Hash Function Near-Collision Example for 3 Rounds

In this section we give an example for a near collision after two rounds. The two
input messages collide in 234 out of 256 bits.

– input 1:

Table 3. Free bits.

(x = 4, y = 0, z = 0) (x = 4, y = 2, z = 0) (x = 4, y = 1, z = 4) (x = 4, y = 2, z = 4)

(x = 2, y = 0, z = 15) (x = 2, y = 1, z = 15) (x = 2, y = 2, z = 15) (x = 1, y = 0, z = 20)

(x = 1, y = 2, z = 20) (x = 1, y = 3, z = 20) (x = 1, y = 0, z = 23) (x = 1, y = 1, z = 23)

(x = 1, y = 2, z = 23) (x = 0, y = 0, z = 24) (x = 4, y = 0, z = 24) (x = 0, y = 1, z = 24)

(x = 4, y = 1, z = 24) (x = 0, y = 2, z = 24) (x = 4, y = 2, z = 24) (x = 0, y = 3, z = 24)

(x = 0, y = 0, z = 27) (x = 0, y = 1, z = 27) (x = 0, y = 2, z = 27) (x = 3, y = 0, z = 28)

(x = 3, y = 1, z = 28) (x = 3, y = 2, z = 28) (x = 2, y = 0, z = 30) (x = 2, y = 1, z = 30)

(x = 2, y = 2, z = 30) (x = 0, y = 1, z = 31) (x = 0, y = 2, z = 31) (x = 0, y = 3, z = 31)

(x = 4, y = 0, z = 34) (x = 4, y = 1, z = 34) (x = 3, y = 0, z = 35) (x = 4, y = 0, z = 35)

(x = 3, y = 1, z = 35) (x = 4, y = 1, z = 35) (x = 3, y = 2, z = 35) (x = 4, y = 2, z = 35)

(x = 2, y = 0, z = 36) (x = 2, y = 1, z = 36) (x = 2, y = 2, z = 36) (x = 3, y = 0, z = 37)

(x = 3, y = 1, z = 37) (x = 3, y = 2, z = 37) (x = 1, y = 0, z = 39) (x = 1, y = 1, z = 39)

(x = 2, y = 0, z = 42) (x = 2, y = 1, z = 42) (x = 3, y = 0, z = 43) (x = 3, y = 1, z = 43)

(x = 1, y = 0, z = 44) (x = 1, y = 1, z = 44) (x = 1, y = 2, z = 44) (x = 1, y = 3, z = 44)

(x = 0, y = 1, z = 47) (x = 0, y = 2, z = 47) (x = 0, y = 3, z = 47) (x = 0, y = 0, z = 54)

(x = 2, y = 0, z = 54) (x = 0, y = 1, z = 54) (x = 2, y = 1, z = 54) (x = 0, y = 2, z = 54)

(x = 2, y = 2, z = 54) (x = 1, y = 0, z = 56) (x = 1, y = 1, z = 56) (x = 1, y = 2, z = 56)

(x = 1, y = 3, z = 56) (x = 1, y = 0, z = 57) (x = 1, y = 1, z = 57) (x = 1, y = 2, z = 57)

(x = 1, y = 3, z = 57) (x = 0, y = 0, z = 60) (x = 0, y = 1, z = 60) (x = 0, y = 2, z = 60)

(x = 0, y = 3, z = 60) (x = 0, y = 0, z = 61) (x = 0, y = 1, z = 61) (x = 0, y = 2, z = 61)

(x = 0, y = 3, z = 61)

0x09c2d45d03bae701a767c1b756e7e594c38ad4c618efc11dc32289
31bb698feb072e3f9a6e9e8b414942e18102755b2e2faf545ac717
402e12ac5f93ce54484955a870311867e2095b981797d778ee2e7e
e3fa8fcb24e650ada1c4a07344f79ab8672027c502b240dda77eb9
39c89134e778718ab86e39f75524e8a200c025ac0bdce3b246ddc5

– input 2:

0x09c2d45d03bae701a767c1b756e7e594c38ad4c618efc11dc32289
31bb698feb072e3fda6e9e8bc14942e18102755b2e2faf545ac717
402e12ac5f93ce54484955a870311867e2095b9817d7d778ee2e7e
e3fa8fcb24e650ada1c4a07344f69ab8672027c502b240dda77eb9
39c89134e778718ab86e39775524e8a200c025ac0bdce3b246ddc4

we get the following difference in the hash value:

– output difference:

0x000020000100800920000000814080102009300009000008000810
0000000001

C Hash Function Collision Example for 2 Rounds

For the two inputs:

– input 1:

0x22458a902041831f3f7ffe62c58b16d1a3468df8f1e2c524499327
22458b17dab468d1983061c2c2850a1543860d1a860d1b37112346
8ca850a041a040800151a3468c52a44890993366ccca94295267cf
9f3e448811220c18306093264c988a142953be7cf9f22e5dbb7792
244992a4499327b265ca951f3e7cf81a3468d053a74f9fe8d1a244

– input 2:

0x22458a902041821f3f7ffe62c58b06d1a34685f8f1e2c524499327
22458b17dab468d1983061c2e2850a1543860d1b860d1b37112346
9ca850a041a040800151a3468c52a44890993366ccca94295267cf
9f3e448811220c18306093264c988a14295bbe7cf9f22e5dbb7792
244992a4499327b265ca953f3e7cf81a3468d053a74f9fe8d1a244

we get the same output, namely:

– output:

0xfa5f041d6152cc9b8f0747aa9f66b1be5365164ff14578436665f4
e828f1ea76

D Preimage for 2 Rounds of the 256-bit Hash Function

We chose as target output the all zero hash. The following message block, which
has the correct final padding, fed to the 2 rounds version of the 256-bit Keccak
hash function, outputs a hash value of all zeros.

– input inclusive the padding:

0x8ed557e2ad30f0ee00000000000000000000000000000000e9a08c
fd1399f7ad00000000000000000000000000000000cb1dc30d0ad7
92214a0bb03f6aedcb230000000000000000a4a82caa2dfa4d388e
d557e2ad30f0ee00000000000000004a0bb03f6aedcb23e9a08cfd
1399f7ada4a82caa2dfa4d380000000000000000cb1dc30d0ad79221

